服务器之家

服务器之家 > 正文

浅析NumPy 切片和索引

时间:2020-09-02 23:58     来源/作者:菜鸟教程

ndarray对象的内容可以通过索引切片来访问和修改,与 Python 中 list 的切片操作一样。

ndarray 数组可以基于 0 - n 的下标进行索引,切片对象可以通过内置的 slice 函数,并设置 start, stop 及 step 参数进行,从原数组中切割出一个新数组。

?
1
2
3
4
5
import numpy as np
 
a = np.arange(10)
s = slice(2,7,2# 从索引 2 开始到索引 7 停止,间隔为2
print (a[s])

输出结果为:

[2 4 6]

以上实例中,我们首先通过 arange() 函数创建 ndarray 对象。 然后,分别设置起始,终止和步长的参数为 2,7 和 2。

我们也可以通过冒号分隔切片参数 start:stop:step 来进行切片操作:

?
1
2
3
4
5
import numpy as np
 
a = np.arange(10)
b = a[2:7:2# 从索引 2 开始到索引 7 停止,间隔为 2
print(b)

输出结果为:

[2 4 6]

冒号 : 的解释:如果只放置一个参数,如 [2],将返回与该索引相对应的单个元素。如果为 [2:],表示从该索引开始以后的所有项都将被提取。如果使用了两个参数,如 [2:7],那么则提取两个索引(不包括停止索引)之间的项。

?
1
2
3
4
5
import numpy as np
 
a = np.arange(10) # [0 1 2 3 4 5 6 7 8 9]
b = a[5]
print(b)

输出结果为:

5

?
1
2
3
4
import numpy as np
 
a = np.arange(10)
print(a[2:])

输出结果为:

[2 3 4 5 6 7 8 9]

?
1
2
3
4
import numpy as np
 
a = np.arange(10) # [0 1 2 3 4 5 6 7 8 9]
print(a[2:5])

输出结果为:

[2 3 4]

多维数组同样适用上述索引提取方法:

?
1
2
3
4
5
6
7
import numpy as np
 
a = np.array([[1,2,3],[3,4,5],[4,5,6]])
print(a)
# 从某个索引处开始切割
print('从数组索引 a[1:] 处开始切割')
print(a[1:])

输出结果为:

[[1 2 3]
[3 4 5]
[4 5 6]]
从数组索引 a[1:] 处开始切割
[[3 4 5]
[4 5 6]]

切片还可以包括省略号 …,来使选择元组的长度与数组的维度相同。 如果在行位置使用省略号,它将返回包含行中元素的 ndarray。

?
1
2
3
4
5
6
import numpy as np
 
a = np.array([[1,2,3],[3,4,5],[4,5,6]])
print (a[...,1])  # 第2列元素
print (a[1,...])  # 第2行元素
print (a[...,1:]) # 第2列及剩下的所有元素

输出结果为:

[2 4 5]
[3 4 5]
[[2 3]
[4 5]
[5 6]]

以上就是浅析NumPy 切片和索引的详细内容,更多关于NumPy 切片和索引的资料请关注服务器之家其它相关文章!

原文链接:https://www.runoob.com/numpy/numpy-ndexing-and-slicing.html

标签:

相关文章

热门资讯

2020微信伤感网名听哭了 让对方看到心疼的伤感网名大全
2020微信伤感网名听哭了 让对方看到心疼的伤感网名大全 2019-12-26
Intellij idea2020永久破解,亲测可用!!!
Intellij idea2020永久破解,亲测可用!!! 2020-07-29
歪歪漫画vip账号共享2020_yy漫画免费账号密码共享
歪歪漫画vip账号共享2020_yy漫画免费账号密码共享 2020-04-07
最新idea2020注册码永久激活(激活到2100年)
最新idea2020注册码永久激活(激活到2100年) 2020-07-29
iPhone12什么时候上市 iPhone12手机真实图片 苹果iphone12多少钱
iPhone12什么时候上市 iPhone12手机真实图片 苹果iphone12多少钱 2020-06-03
返回顶部