前言
MySQL在2016年仍然保持强劲的数据库流行度增长趋势。越来越多的客户将自己的应用建立在MySQL数据库之上,甚至是从Oracle迁移到MySQL上来。但也存在部分客户在使用MySQL数据库的过程中遇到一些比如响应时间慢,CPU打满等情况。
阿里云RDS专家服务团队帮助云上客户解决过很多紧急问题。现将《ApsaraDB专家诊断报告》中出现的部分常见SQL问题总结如下,供大家参考。
1、LIMIT 语句
分页查询是最常用的场景之一,但也通常也是最容易出问题的地方。
比如对于下面简单的语句,一般 DBA 想到的办法是在 type, name, create_time 字段上加组合索引。这样条件排序都能有效的利用到索引,性能迅速提升。
1
2
3
4
5
6
|
SELECT * FROM operation WHERE type = 'SQLStats' AND name = 'SlowLog' ORDER BY create_time LIMIT 1000, 10; |
好吧,可能90%以上的 DBA 解决该问题就到此为止。
但当 LIMIT 子句变成 “LIMIT 1000000,10” 时,程序员仍然会抱怨:我只取10条记录为什么还是慢?
要知道数据库也并不知道第1000000条记录从什么地方开始,即使有索引也需要从头计算一次。出现这种性能问题,多数情形下是程序员偷懒了。
在前端数据浏览翻页,或者大数据分批导出等场景下,是可以将上一页的最大值当成参数作为查询条件的。SQL 重新设计如下:
1
2
3
4
5
6
|
SELECT * FROM operation WHERE type = 'SQLStats' AND name = 'SlowLog' AND create_time > '2017-03-16 14:00:00' ORDER BY create_time limit 10; |
在新设计下查询时间基本固定,不会随着数据量的增长而发生变化。
2、隐式转换
SQL语句中查询变量和字段定义类型不匹配是另一个常见的错误。比如下面的语句:
1
2
3
4
5
6
|
mysql> explain extended SELECT * > FROM my_balance b > WHERE b.bpn = 14000000123 > AND b.isverified IS NULL ; mysql> show warnings; | Warning | 1739 | Cannot use ref access on index 'bpn' due to type or collation conversion on field 'bpn' |
其中字段 bpn 的定义为 varchar(20),MySQL 的策略是将字符串转换为数字之后再比较。函数作用于表字段,索引失效。
上述情况可能是应用程序框架自动填入的参数,而不是程序员的原意。现在应用框架很多很繁杂,使用方便的同时也小心它可能给自己挖坑。
3、关联更新、删除
虽然 MySQL5.6 引入了物化特性,但需要特别注意它目前仅仅针对查询语句的优化。对于更新或删除需要手工重写成 JOIN。
比如下面 UPDATE 语句,MySQL 实际执行的是循环/嵌套子查询(DEPENDENT SUBQUERY),其执行时间可想而知。
1
2
3
4
5
6
7
8
9
10
11
|
UPDATE operation o SET status = 'applying' WHERE o.id IN ( SELECT id FROM ( SELECT o.id, o.status FROM operation o WHERE o. group = 123 AND o.status NOT IN ( 'done' ) ORDER BY o.parent, o.id LIMIT 1) t); |
执行计划:
1
2
3
4
5
6
7
|
+ ----+--------------------+-------+-------+---------------+---------+---------+-------+------+-----------------------------------------------------+ | id | select_type | table | type | possible_keys | key | key_len | ref | rows | Extra | + ----+--------------------+-------+-------+---------------+---------+---------+-------+------+-----------------------------------------------------+ | 1 | PRIMARY | o | index | | PRIMARY | 8 | | 24 | Using where ; Using temporary | | 2 | DEPENDENT SUBQUERY | | | | | | | | Impossible WHERE noticed after reading const tables | | 3 | DERIVED | o | ref | idx_2,idx_5 | idx_5 | 8 | const | 1 | Using where ; Using filesort | + ----+--------------------+-------+-------+---------------+---------+---------+-------+------+-----------------------------------------------------+ |
重写为 JOIN 之后,子查询的选择模式从 DEPENDENT SUBQUERY 变成 DERIVED,执行速度大大加快,从7秒降低到2毫秒。
1
2
3
4
5
6
7
8
9
10
11
|
UPDATE operation o JOIN ( SELECT o.id, o.status FROM operation o WHERE o. group = 123 AND o.status NOT IN ( 'done' ) ORDER BY o.parent, o.id LIMIT 1) t ON o.id = t.id SET status = 'applying' |
执行计划简化为
1
2
3
4
5
6
|
+ ----+-------------+-------+------+---------------+-------+---------+-------+------+-----------------------------------------------------+ | id | select_type | table | type | possible_keys | key | key_len | ref | rows | Extra | + ----+-------------+-------+------+---------------+-------+---------+-------+------+-----------------------------------------------------+ | 1 | PRIMARY | | | | | | | | Impossible WHERE noticed after reading const tables | | 2 | DERIVED | o | ref | idx_2,idx_5 | idx_5 | 8 | const | 1 | Using where ; Using filesort | + ----+-------------+-------+------+---------------+-------+---------+-------+------+-----------------------------------------------------+ |
4、混合排序
MySQL 不能利用索引进行混合排序。但在某些场景,还是有机会使用特殊方法提升性能的。
1
2
3
4
5
6
|
SELECT * FROM my_order o INNER JOIN my_appraise a ON a.orderid = o.id ORDER BY a.is_reply ASC , a.appraise_time DESC LIMIT 0, 20 |
执行计划显示为全表扫描:
1
2
3
4
5
6
|
+ ----+-------------+-------+--------+-------------+---------+---------+---------------+---------+-+ | id | select_type | table | type | possible_keys | key | key_len | ref | rows | Extra + ----+-------------+-------+--------+-------------+---------+---------+---------------+---------+-+ | 1 | SIMPLE | a | ALL | idx_orderid | NULL | NULL | NULL | 1967647 | Using filesort | | 1 | SIMPLE | o | eq_ref | PRIMARY | PRIMARY | 122 | a.orderid | 1 | NULL | + ----+-------------+-------+--------+---------+---------+---------+-----------------+---------+-+ |
由于 is_reply 只有0和1两种状态,我们按照下面的方法重写后,执行时间从1.58秒降低到2毫秒。
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
|
SELECT * FROM (( SELECT * FROM my_order o INNER JOIN my_appraise a ON a.orderid = o.id AND is_reply = 0 ORDER BY appraise_time DESC LIMIT 0, 20) UNION ALL ( SELECT * FROM my_order o INNER JOIN my_appraise a ON a.orderid = o.id AND is_reply = 1 ORDER BY appraise_time DESC LIMIT 0, 20)) t ORDER BY is_reply ASC , appraisetime DESC LIMIT 20; |
5、EXISTS语句
MySQL 对待 EXISTS 子句时,仍然采用嵌套子查询的执行方式。如下面的 SQL 语句:
1
2
3
4
5
6
7
8
9
10
11
|
SELECT * FROM my_neighbor n LEFT JOIN my_neighbor_apply sra ON n.id = sra.neighbor_id AND sra.user_id = 'xxx' WHERE n.topic_status < 4 AND EXISTS( SELECT 1 FROM message_info m WHERE n.id = m.neighbor_id AND m.inuser = 'xxx' ) AND n.topic_type <> 5 |
执行计划为:
1
2
3
4
5
6
7
|
+ ----+--------------------+-------+------+-----+------------------------------------------+---------+-------+---------+ -----+ | id | select_type | table | type | possible_keys | key | key_len | ref | rows | Extra | + ----+--------------------+-------+------+ -----+------------------------------------------+---------+-------+---------+ -----+ | 1 | PRIMARY | n | ALL | | NULL | NULL | NULL | 1086041 | Using where | | 1 | PRIMARY | sra | ref | | idx_user_id | 123 | const | 1 | Using where | | 2 | DEPENDENT SUBQUERY | m | ref | | idx_message_info | 122 | const | 1 | Using index condition; Using where | + ----+--------------------+-------+------+ -----+------------------------------------------+---------+-------+---------+ -----+ |
去掉 exists 更改为 join,能够避免嵌套子查询,将执行时间从1.93秒降低为1毫秒。
1
2
3
4
5
6
7
8
9
10
|
SELECT * FROM my_neighbor n INNER JOIN message_info m ON n.id = m.neighbor_id AND m.inuser = 'xxx' LEFT JOIN my_neighbor_apply sra ON n.id = sra.neighbor_id AND sra.user_id = 'xxx' WHERE n.topic_status < 4 AND n.topic_type <> 5 |
新的执行计划:
1
2
3
4
5
6
7
|
+ ----+-------------+-------+--------+ -----+------------------------------------------+---------+ -----+------+ -----+ | id | select_type | table | type | possible_keys | key | key_len | ref | rows | Extra | + ----+-------------+-------+--------+ -----+------------------------------------------+---------+ -----+------+ -----+ | 1 | SIMPLE | m | ref | | idx_message_info | 122 | const | 1 | Using index condition | | 1 | SIMPLE | n | eq_ref | | PRIMARY | 122 | ighbor_id | 1 | Using where | | 1 | SIMPLE | sra | ref | | idx_user_id | 123 | const | 1 | Using where | + ----+-------------+-------+--------+ -----+------------------------------------------+---------+ -----+------+ -----+ |
6、条件下推
外部查询条件不能够下推到复杂的视图或子查询的情况有:
- 聚合子查询;
- 含有 LIMIT 的子查询;
- UNION 或 UNION ALL 子查询;
- 输出字段中的子查询;
如下面的语句,从执行计划可以看出其条件作用于聚合子查询之后:
1
2
3
4
5
6
|
SELECT * FROM ( SELECT target, Count (*) FROM operation GROUP BY target) t WHERE target = 'rm-xxxx' |
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
|
+ ----+-------------+------------+-------+---------------+-------------+---------+-------+------+-------------+ | id | select_type | table | type | possible_keys | key | key_len | ref | rows | Extra | + ----+-------------+------------+-------+---------------+-------------+---------+-------+------+-------------+ | 1 | PRIMARY | <derived2> | ref | <auto_key 0 > | <auto_key0> | 514 | const | 2 | Using where | | 2 | DERIVED | operation | index | idx_4 | idx_4 | 519 | NULL | 20 | Using index | + ----+-------------+------------+-------+---------------+-------------+---------+-------+------+-------------+ |
确定从语义上查询条件可以直接下推后,重写如下:
1
2
3
4
5
|
SELECT target, Count (*) FROM operation WHERE target = 'rm-xxxx' GROUP BY target |
执行计划变为:
1
2
3
4
5
|
+ ----+-------------+-----------+------+---------------+-------+---------+-------+------+--------------------+ | id | select_type | table | type | possible_keys | key | key_len | ref | rows | Extra | + ----+-------------+-----------+------+---------------+-------+---------+-------+------+--------------------+ | 1 | SIMPLE | operation | ref | idx_4 | idx_4 | 514 | const | 1 | Using where ; Using index | + ----+-------------+-----------+------+---------------+-------+---------+-------+------+--------------------+ |
关于 MySQL 外部条件不能下推的详细解释说明请参考文章:http://mysql.taobao.org/monthly/2016/07/08
7、提前缩小范围
先上初始 SQL 语句:
1
2
3
4
5
6
7
8
9
10
|
SELECT * FROM my_order o LEFT JOIN my_userinfo u ON o.uid = u.uid LEFT JOIN my_productinfo p ON o.pid = p.pid WHERE ( o.display = 0 ) AND ( o.ostaus = 1 ) ORDER BY o.selltime DESC LIMIT 0, 15 |
该SQL语句原意是:先做一系列的左连接,然后排序取前15条记录。从执行计划也可以看出,最后一步估算排序记录数为90万,时间消耗为12秒。
1
2
3
4
5
6
7
|
+ ----+-------------+-------+--------+---------------+---------+---------+-----------------+--------+----------------------------------------------------+ | id | select_type | table | type | possible_keys | key | key_len | ref | rows | Extra | + ----+-------------+-------+--------+---------------+---------+---------+-----------------+--------+----------------------------------------------------+ | 1 | SIMPLE | o | ALL | NULL | NULL | NULL | NULL | 909119 | Using where ; Using temporary ; Using filesort | | 1 | SIMPLE | u | eq_ref | PRIMARY | PRIMARY | 4 | o.uid | 1 | NULL | | 1 | SIMPLE | p | ALL | PRIMARY | NULL | NULL | NULL | 6 | Using where ; Using join buffer (Block Nested Loop) | + ----+-------------+-------+--------+---------------+---------+---------+-----------------+--------+----------------------------------------------------+ |
由于最后 WHERE 条件以及排序均针对最左主表,因此可以先对 my_order 排序提前缩小数据量再做左连接。SQL 重写后如下,执行时间缩小为1毫秒左右。
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
|
SELECT * FROM ( SELECT * FROM my_order o WHERE ( o.display = 0 ) AND ( o.ostaus = 1 ) ORDER BY o.selltime DESC LIMIT 0, 15 ) o LEFT JOIN my_userinfo u ON o.uid = u.uid LEFT JOIN my_productinfo p ON o.pid = p.pid ORDER BY o.selltime DESC limit 0, 15 |
再检查执行计划:子查询物化后(select_type=DERIVED)参与 JOIN。虽然估算行扫描仍然为90万,但是利用了索引以及 LIMIT 子句后,实际执行时间变得很小。
1
2
3
4
5
6
7
8
|
+ ----+-------------+------------+--------+---------------+---------+---------+-------+--------+----------------------------------------------------+ | id | select_type | table | type | possible_keys | key | key_len | ref | rows | Extra | + ----+-------------+------------+--------+---------------+---------+---------+-------+--------+----------------------------------------------------+ | 1 | PRIMARY | <derived2> | ALL | NULL | NULL | NULL | NULL | 15 | Using temporary ; Using filesort | | 1 | PRIMARY | u | eq_ref | PRIMARY | PRIMARY | 4 | o.uid | 1 | NULL | | 1 | PRIMARY | p | ALL | PRIMARY | NULL | NULL | NULL | 6 | Using where ; Using join buffer (Block Nested Loop) | | 2 | DERIVED | o | index | NULL | idx_1 | 5 | NULL | 909112 | Using where | + ----+-------------+------------+--------+---------------+---------+---------+-------+--------+----------------------------------------------------+ |
8、中间结果集下推
再来看下面这个已经初步优化过的例子(左连接中的主表优先作用查询条件):
1
2
3
4
5
6
7
8
9
10
11
12
13
14
|
SELECT a.*, c.allocated FROM ( SELECT resourceid FROM my_distribute d WHERE isdelete = 0 AND cusmanagercode = '1234567' ORDER BY salecode limit 20) a LEFT JOIN ( SELECT resourcesid, sum (ifnull(allocation, 0) * 12345) allocated FROM my_resources GROUP BY resourcesid) c ON a.resourceid = c.resourcesid |
那么该语句还存在其它问题吗?不难看出子查询 c 是全表聚合查询,在表数量特别大的情况下会导致整个语句的性能下降。
其实对于子查询 c,左连接最后结果集只关心能和主表 resourceid 能匹配的数据。因此我们可以重写语句如下,执行时间从原来的2秒下降到2毫秒。
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
|
SELECT a.*, c.allocated FROM ( SELECT resourceid FROM my_distribute d WHERE isdelete = 0 AND cusmanagercode = '1234567' ORDER BY salecode limit 20) a LEFT JOIN ( SELECT resourcesid, sum (ifnull(allocation, 0) * 12345) allocated FROM my_resources r, ( SELECT resourceid FROM my_distribute d WHERE isdelete = 0 AND cusmanagercode = '1234567' ORDER BY salecode limit 20) a WHERE r.resourcesid = a.resourcesid GROUP BY resourcesid) c ON a.resourceid = c.resourcesid |
但是子查询 a 在我们的SQL语句中出现了多次。这种写法不仅存在额外的开销,还使得整个语句显的繁杂。使用 WITH 语句再次重写:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
|
WITH a AS ( SELECT resourceid FROM my_distribute d WHERE isdelete = 0 AND cusmanagercode = '1234567' ORDER BY salecode limit 20) SELECT a.*, c.allocated FROM a LEFT JOIN ( SELECT resourcesid, sum (ifnull(allocation, 0) * 12345) allocated FROM my_resources r, a WHERE r.resourcesid = a.resourcesid GROUP BY resourcesid) c ON a.resourceid = c.resourcesid |
总结
数据库编译器产生执行计划,决定着SQL的实际执行方式。但是编译器只是尽力服务,所有数据库的编译器都不是尽善尽美的。
上述提到的多数场景,在其它数据库中也存在性能问题。了解数据库编译器的特性,才能避规其短处,写出高性能的SQL语句。
程序员在设计数据模型以及编写SQL语句时,要把算法的思想或意识带进来。
编写复杂SQL语句要养成使用 WITH 语句的习惯。简洁且思路清晰的SQL语句也能减小数据库的负担 。
好了,以上就是这篇文章的全部内容了,希望本文的内容对大家的学习或者工作具有一定的参考学习价值,谢谢大家对服务器之家的支持。
原文链接:https://yq.aliyun.com/articles/72501