本文实例讲述了Python基于回溯法子集树模板实现图的遍历功能。分享给大家供大家参考,具体如下:
问题
一个图:
A --> B
A --> C
B --> C
B --> D
B --> E
C --> A
C --> D
D --> C
E --> F
F --> C
F --> D
从图中的一个节点E出发,不重复地经过所有其它节点后,回到出发节点E,称为一条路径。请找出所有可能的路径。
分析
将这个图可视化如下:
本问题涉及到图,那首先要考虑图用那种存储结构表示。邻接矩阵、邻接表、...都不太熟。
前面这篇文章https://www.zzvips.com/article/120700.html有一种最简洁的邻接表表示方式。
接下来对问题本身进行分析:
显然,问题的解的长度是固定的,亦即所有的路径长度都是固定的:n(不回到出发节点) 或 n+1(回到出发节点)
每个节点,都有各自的邻接节点。
对某个节点来说,它的所有邻接节点,可以看作这个节点的状态空间。遍历其状态空间,剪枝,深度优先递归到下一个节点。搞定!
至此,很明显套用回溯法子集树模板。
代码:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
|
''' 图的遍历 从一个节点出发,不重复地经过所有其它节点后,回到出发节点。找出所有的路径 ''' # 用邻接表表示图 n = 6 # 节点数 a,b,c,d,e,f = range (n) # 节点名称 graph = [ {b,c}, {c,d,e}, {a,d}, {c}, {f}, {c,d} ] x = [ 0 ] * (n + 1 ) # 一个解(n+1元数组,长度固定) X = [] # 一组解 # 冲突检测 def conflict(k): global n,graph,x # 第k个节点,是否前面已经走过 if k < n and x[k] in x[:k]: return True # 回到出发节点 if k = = n and x[k] ! = x[ 0 ]: return True return False # 无冲突 # 图的遍历 def dfs(k): # 到达(解x的)第k个节点 global n,a,b,c,d,e,f,graph,x,X if k > n: # 解的长度超出,已走遍n+1个节点 (若不回到出发节点,则 k==n) print (x) #X.append(x[:]) else : for node in graph[x[k - 1 ]]: # 遍历节点x[k]的邻接节点(x[k]的所有状态) x[k] = node if not conflict(k): # 剪枝 dfs(k + 1 ) # 测试 x[ 0 ] = e # 出发节点 dfs( 1 ) # 开始处理解x中的第2个节点 |
效果图:
希望本文所述对大家Python程序设计有所帮助。
原文链接:http://www.cnblogs.com/hhh5460/p/6928465.html