LDA(Latent Dirichlet allocation)模型是一种常用而用途广泛地概率主题模型。其实现一般通过Variational inference和Gibbs Samping实现。作者在提出LDA模型时给出了其变分推理的C源码(后续贴出C++改编的类),这里贴出基于Python的第三方模块改写的LDA类及实现。
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
|
#coding:utf-8 import numpy as np import lda import lda.datasets import jieba import codecs class LDA_v20161130(): def __init__( self , topics = 2 ): self .n_topic = topics self .corpus = None self .vocab = None self .ppCountMatrix = None self .stop_words = [u ',' , u '。' , u '、' , u '(' , u ')' , u '·' , u '!' , u ' ' , u ':' , u '“' , u '”' , u '\n' ] self .model = None def loadCorpusFromFile( self , fn): # 中文分词 f = open (fn, 'r' ) text = f.readlines() text = r ' ' .join(text) seg_generator = jieba.cut(text) seg_list = [i for i in seg_generator if i not in self .stop_words] seg_list = r ' ' .join(seg_list) # 切割统计所有出现的词纳入词典 seglist = seg_list.split( " " ) self .vocab = [] for word in seglist: if (word ! = u ' ' and word not in self .vocab): self .vocab.append(word) CountMatrix = [] f.seek( 0 , 0 ) # 统计每个文档中出现的词频 for line in f: # 置零 count = np.zeros( len ( self .vocab),dtype = np. int ) text = line.strip() # 但还是要先分词 seg_generator = jieba.cut(text) seg_list = [i for i in seg_generator if i not in self .stop_words] seg_list = r ' ' .join(seg_list) seglist = seg_list.split( " " ) # 查询词典中的词出现的词频 for word in seglist: if word in self .vocab: count[ self .vocab.index(word)] + = 1 CountMatrix.append(count) f.close() #self.ppCountMatrix = (len(CountMatrix), len(self.vocab)) self .ppCountMatrix = np.array(CountMatrix) print "load corpus from %s success!" % fn def setStopWords( self , word_list): self .stop_words = word_list def fitModel( self , n_iter = 1500 , _alpha = 0.1 , _eta = 0.01 ): self .model = lda.LDA(n_topics = self .n_topic, n_iter = n_iter, alpha = _alpha, eta = _eta, random_state = 1 ) self .model.fit( self .ppCountMatrix) def printTopic_Word( self , n_top_word = 8 ): for i, topic_dist in enumerate ( self .model.topic_word_): topic_words = np.array( self .vocab)[np.argsort(topic_dist)][: - (n_top_word + 1 ): - 1 ] print "Topic:" ,i, "\t" , for word in topic_words: print word, print def printDoc_Topic( self ): for i in range ( len ( self .ppCountMatrix)): print ( "Doc %d:((top topic:%s) topic distribution:%s)" % (i, self .model.doc_topic_[i].argmax(), self .model.doc_topic_[i])) def printVocabulary( self ): print "vocabulary:" for word in self .vocab: print word, print def saveVocabulary( self , fn): f = codecs. open (fn, 'w' , 'utf-8' ) for word in self .vocab: f.write( "%s\n" % word) f.close() def saveTopic_Words( self , fn, n_top_word = - 1 ): if n_top_word = = - 1 : n_top_word = len ( self .vocab) f = codecs. open (fn, 'w' , 'utf-8' ) for i, topic_dist in enumerate ( self .model.topic_word_): topic_words = np.array( self .vocab)[np.argsort(topic_dist)][: - (n_top_word + 1 ): - 1 ] f.write( "Topic:%d\t" % i) for word in topic_words: f.write( "%s " % word) f.write( "\n" ) f.close() def saveDoc_Topic( self , fn): f = codecs. open (fn, 'w' , 'utf-8' ) for i in range ( len ( self .ppCountMatrix)): f.write( "Doc %d:((top topic:%s) topic distribution:%s)\n" % (i, self .model.doc_topic_[i].argmax(), self .model.doc_topic_[i])) f.close() |
算法实现demo:
例如,抓取BBC川普当选的新闻作为语料,输入以下代码:
1
2
3
4
5
6
7
8
9
10
11
12
|
if __name__ = = "__main__" : _lda = LDA_v20161130(topics = 20 ) stop = [u '!' , u '@' , u '#' , u ',' ,u '.' ,u '/' ,u ';' ,u ' ' ,u '[' ,u ']' ,u '$' ,u '%' ,u '^' ,u '&' ,u '*' ,u '(' ,u ')' , u '"' ,u ':' ,u '<' ,u '>' ,u '?' ,u '{' ,u '}' ,u '=' ,u '+' ,u '_' ,u '-' ,u '''''' ] _lda.setStopWords(stop) _lda.loadCorpusFromFile(u 'C:\\Users\Administrator\Desktop\\BBC.txt' ) _lda.fitModel(n_iter = 1500 ) _lda.printTopic_Word(n_top_word = 10 ) _lda.printDoc_Topic() _lda.saveVocabulary(u 'C:\\Users\Administrator\Desktop\\vocab.txt' ) _lda.saveTopic_Words(u 'C:\\Users\Administrator\Desktop\\topic_word.txt' ) _lda.saveDoc_Topic(u 'C:\\Users\Administrator\Desktop\\doc_topic.txt' ) |
因为语料全部为英文,因此这里的stop_words全部设置为英文符号,主题设置20个,迭代1500次。结果显示,文档148篇,词典1347词,总词数4174,在i3的电脑上运行17s。
Topic_words部分输出如下:
Topic: 0
to will and of he be trumps the what policy
Topic: 1 he would in said not no with mr this but
Topic: 2 for or can some whether have change health obamacare insurance
Topic: 3 the to that president as of us also first all
Topic: 4 trump to when with now were republican mr office presidential
Topic: 5 the his trump from uk who president to american house
Topic: 6 a to that was it by issue vote while marriage
Topic: 7 the to of an are they which by could from
Topic: 8 of the states one votes planned won two new clinton
Topic: 9 in us a use for obama law entry new interview
Topic: 10 and on immigration has that there website vetting action given
Doc_Topic部分输出如下:
Doc 0:((top topic:4) topic distribution:[ 0.02972973 0.0027027 0.0027027 0.16486486 0.32702703 0.19189189
0.0027027 0.0027027 0.02972973 0.0027027 0.02972973 0.0027027
0.0027027 0.0027027 0.02972973 0.0027027 0.02972973 0.0027027
0.13783784 0.0027027 ])
Doc 1:((top topic:18) topic distribution:[ 0.21 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.11 0.01 0.01 0.01
0.01 0.01 0.01 0.01 0.01 0.01 0.31 0.21])
Doc 2:((top topic:18) topic distribution:[ 0.02075472 0.00188679 0.03962264 0.00188679 0.00188679 0.00188679
0.00188679 0.15283019 0.00188679 0.02075472 0.00188679 0.24716981
0.00188679 0.07735849 0.00188679 0.00188679 0.00188679 0.00188679
0.41698113 0.00188679])
当然,对于英文语料,需要排除大部分的虚词以及常用无意义词,例如it, this, there, that...在实际操作中,需要合理地设置参数。
换中文语料尝试,采用习大大就卡斯特罗逝世发表的吊唁文章和朴槿惠辞职的新闻。
Topic: 0
的 同志 和 人民 卡斯特罗 菲德尔 古巴 他 了 我
Topic: 1 在 朴槿惠 向 表示 总统 对 将 的 月 国民
Doc 0:((top topic:0) topic distribution:[ 0.91714123 0.08285877])
Doc 1:((top topic:1) topic distribution:[ 0.09200666 0.90799334])
还是存在一些虚词,例如“的”,“和”,“了”,“对”等词的干扰,但是大致来说,两则新闻的主题分布很明显,效果还不赖。
总结
以上就是本文关于Python_LDA实现方法详解的全部内容,希望对大家有所帮助。感兴趣的朋友可以继续参阅本站:python+mongodb数据抓取详细介绍、Python探索之创建二叉树、Python探索之修改Python搜索路径等,有什么问题可以随时留言,欢迎大家一起交流讨论。感谢朋友们对本站的支持!
原文链接:http://blog.csdn.net/liuph_/article/details/53406609