本文实例为大家分享了python编写决策树源代码,供大家参考,具体内容如下
因为最近实习的需要,所以用python里的sklearn包重新写了一次决策树。
工具:sklearn,将dot文件转化为pdf格式(是为了将形成的决策树可视化)graphviz-2.38,下载解压之后将其中的bin文件的目录添加进环境变量
源代码如下:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
|
from sklearn.feature_extraction import DictVectorizer import csv from sklearn import tree from sklearn import preprocessing from sklearn.externals.six import StringIO from xml.sax.handler import feature_external_ges from numpy.distutils.fcompiler import dummy_fortran_file # Read in the csv file and put features into list of dict and list of class label allElectronicsData = open (r 'E:/DeepLearning/resources/AllElectronics.csv' , 'rt' ) reader = csv.reader(allElectronicsData) headers = next (reader) featureList = [] lableList = [] for row in reader: lableList.append(row[ len (row) - 1 ]) rowDict = {} #不包括len(row)-1 for i in range ( 1 , len (row) - 1 ): rowDict[headers[i]] = row[i] featureList.append(rowDict) print (featureList) vec = DictVectorizer() dummX = vec.fit_transform(featureList).toarray() print ( str (dummX)) lb = preprocessing.LabelBinarizer() dummY = lb.fit_transform(lableList) print ( str (dummY)) #entropy=>ID3 clf = tree.DecisionTreeClassifier(criterion = 'entropy' ) clf = clf.fit(dummX, dummY) print ( "clf:" + str (clf)) #可视化tree with open ( "resultTree.dot" , 'w' )as f: f = tree.export_graphviz(clf, feature_names = vec.get_feature_names(),out_file = f) #对于新的数据怎样来查看它的分类 oneRowX = dummX[ 0 ,:] print ( "oneRowX: " + str (oneRowX)) newRowX = oneRowX newRowX[ 0 ] = 1 newRowX[ 2 ] = 0 predictedY = clf.predict(newRowX) print ( "predictedY: " + str (predictedY)) |
这里的AllElectronics.csv,形式如下图所示:
今天早上好不容易将jdk、eclipse以及pydev装进linux,但是,但是,但是,想装numpy的时候,总是报错,发现是没有gcc,然后又去装gcc,真是醉了,到现在gcc还是没有装成功,再想想方法
原文链接:https://www.cnblogs.com/yunerlalala/p/6240296.html