本文实例讲述了Python实现破解12306图片验证码的方法。分享给大家供大家参考,具体如下:
不知从何时起,12306的登录验证码竟然变成了按字找图,可以说是又提高了一个等次,竟然把图像识别都用上了。不过有些图片,不得不说有些变态,图片的清晰图就更别说了,明显是从网络上的图库中搬过来的。
谁知没多久,网络就惊现破解12306图片验证码的Python代码了,作为一个爱玩爱刺激的网虫,当然要分享一份过来。
代码大致流程:
1、将验证码图片下载下来,然后切图;
2、利用百度识图进行图片分析;
3、再利用正则表达式来取出百度识图的关键字,最后输出。
代码:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
|
#!/usr/bin/python # # FileName : fuck12306.py # # Author : MaoMao Wang <andelf@gmail.com> # # Created : Mon Mar 16 22:08:41 2015 by ShuYu Wang # # Copyright : Feather (c) 2015 # # Description : fuck fuck 12306 # # Time-stamp: <2015-03-17 10:57:44 andelf> from PIL import Image from PIL import ImageFilter import urllib import urllib2 import re import json # hack CERTIFICATE_VERIFY_FAILED # https://github.com/mtschirs/quizduellapi/issues/2 import ssl if hasattr (ssl, '_create_unverified_context' ): ssl._create_default_https_context = ssl._create_unverified_context UA = "Mozilla/5.0 (Macintosh; Intel Mac OS X 10_10_2) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/41.0.2272.89 Safari/537.36" pic_url = "https://kyfw.12306.cn/otn/passcodeNew/getPassCodeNew?module=login&rand=sjrand&0.21191171556711197" def get_img(): resp = urllib.urlopen(pic_url) raw = resp.read() with open ( "./tmp.jpg" , 'wb' ) as fp: fp.write(raw) return Image. open ( "./tmp.jpg" ) def get_sub_img(im, x, y): assert 0 < = x < = 3 assert 0 < = y < = 2 WITH = HEIGHT = 68 left = 5 + ( 67 + 5 ) * x top = 41 + ( 67 + 5 ) * y right = left + 67 bottom = top + 67 return im.crop((left, top, right, bottom)) def baidu_stu_lookup(im): url = "http://stu.baidu.com/n/image?fr=html5&needRawImageUrl=true&id=WU_FILE_0&name=233.png&type=image%2Fpng&lastModifiedDate=Mon+Mar+16+2015+20%3A49%3A11+GMT%2B0800+(CST)&size=" im.save( "./query_temp_img.png" ) raw = open ( "./query_temp_img.png" , 'rb' ).read() url = url + str ( len (raw)) req = urllib2.Request(url, raw, { 'Content-Type' : 'image/png' , 'User-Agent' :UA}) resp = urllib2.urlopen(req) resp_url = resp.read() # return a pure url url = "http://stu.baidu.com/n/searchpc?queryImageUrl=" + urllib.quote(resp_url) req = urllib2.Request(url, headers = { 'User-Agent' :UA}) resp = urllib2.urlopen(req) html = resp.read() return baidu_stu_html_extract(html) def baidu_stu_html_extract(html): #pattern = re.compile(r'<script type="text/javascript">(.*?)</script>', re.DOTALL | re.MULTILINE) pattern = re. compile (r "keywords:'(.*?)'" ) matches = pattern.findall(html) if not matches: return '[UNKNOWN]' json_str = matches[ 0 ] json_str = json_str.replace( '\\x22' , '"' ).replace( '\\\\', ' \\') #print json_str result = [item[ 'keyword' ] for item in json.loads(json_str)] return '|' .join(result) if result else '[UNKNOWN]' def ocr_question_extract(im): # git@github.com:madmaze/pytesseract.git global pytesseract try : import pytesseract except : print "[ERROR] pytesseract not installed" return im = im.crop(( 127 , 3 , 260 , 22 )) im = pre_ocr_processing(im) # im.show() return pytesseract.image_to_string(im, lang = 'chi_sim' ).strip() def pre_ocr_processing(im): im = im.convert( "RGB" ) width, height = im.size white = im. filter (ImageFilter.BLUR). filter (ImageFilter.MaxFilter( 23 )) grey = im.convert( 'L' ) impix = im.load() whitepix = white.load() greypix = grey.load() for y in range (height): for x in range (width): greypix[x,y] = min ( 255 , max ( 255 + impix[x,y][ 0 ] - whitepix[x,y][ 0 ], 255 + impix[x,y][ 1 ] - whitepix[x,y][ 1 ], 255 + impix[x,y][ 2 ] - whitepix[x,y][ 2 ])) new_im = grey.copy() binarize(new_im, 150 ) return new_im def binarize(im, thresh = 120 ): assert 0 < thresh < 255 assert im.mode = = 'L' w, h = im.size for y in xrange ( 0 , h): for x in xrange ( 0 , w): if im.getpixel((x,y)) < thresh: im.putpixel((x,y), 0 ) else : im.putpixel((x,y), 255 ) if __name__ = = '__main__' : im = get_img() #im = Image.open("./tmp.jpg") print 'OCR Question:' , ocr_question_extract(im) for y in range ( 2 ): for x in range ( 4 ): im2 = get_sub_img(im, x, y) result = baidu_stu_lookup(im2) print (y,x), result |
希望本文所述对大家Python程序设计有所帮助。
原文链接:http://blog.csdn.net/wuxing26jiayou/article/details/78915864