本文实例讲述了基于Python实现的ID3决策树功能。分享给大家供大家参考,具体如下:
ID3算法是决策树的一种,它是基于奥卡姆剃刀原理的,即用尽量用较少的东西做更多的事。ID3算法,即Iterative Dichotomiser 3,迭代二叉树3代,是Ross Quinlan发明的一种决策树算法,这个算法的基础就是上面提到的奥卡姆剃刀原理,越是小型的决策树越优于大的决策树,尽管如此,也不总是生成最小的树型结构,而是一个启发式算法。
如下示例是一个判断海洋生物数据是否是鱼类而构建的基于ID3思想的决策树
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
|
# coding=utf-8 import operator from math import log import time def createDataSet(): dataSet = [[ 1 , 1 , 'yes' ], [ 1 , 1 , 'yes' ], [ 1 , 0 , 'no' ], [ 0 , 1 , 'no' ], [ 0 , 1 , 'no' ], [ 0 , 0 , 'maybe' ]] labels = [ 'no surfaceing' , 'flippers' ] return dataSet, labels # 计算香农熵 def calcShannonEnt(dataSet): numEntries = len (dataSet) labelCounts = {} for feaVec in dataSet: currentLabel = feaVec[ - 1 ] if currentLabel not in labelCounts: labelCounts[currentLabel] = 0 labelCounts[currentLabel] + = 1 shannonEnt = 0.0 for key in labelCounts: prob = float (labelCounts[key]) / numEntries shannonEnt - = prob * log(prob, 2 ) return shannonEnt def splitDataSet(dataSet, axis, value): retDataSet = [] for featVec in dataSet: if featVec[axis] = = value: reducedFeatVec = featVec[:axis] reducedFeatVec.extend(featVec[axis + 1 :]) retDataSet.append(reducedFeatVec) return retDataSet def chooseBestFeatureToSplit(dataSet): numFeatures = len (dataSet[ 0 ]) - 1 # 因为数据集的最后一项是标签 baseEntropy = calcShannonEnt(dataSet) bestInfoGain = 0.0 bestFeature = - 1 for i in range (numFeatures): featList = [example[i] for example in dataSet] uniqueVals = set (featList) newEntropy = 0.0 for value in uniqueVals: subDataSet = splitDataSet(dataSet, i, value) prob = len (subDataSet) / float ( len (dataSet)) newEntropy + = prob * calcShannonEnt(subDataSet) infoGain = baseEntropy - newEntropy if infoGain > bestInfoGain: bestInfoGain = infoGain bestFeature = i return bestFeature # 因为我们递归构建决策树是根据属性的消耗进行计算的,所以可能会存在最后属性用完了,但是分类 # 还是没有算完,这时候就会采用多数表决的方式计算节点分类 def majorityCnt(classList): classCount = {} for vote in classList: if vote not in classCount.keys(): classCount[vote] = 0 classCount[vote] + = 1 return max (classCount) def createTree(dataSet, labels): classList = [example[ - 1 ] for example in dataSet] if classList.count(classList[ 0 ]) = = len (classList): # 类别相同则停止划分 return classList[ 0 ] if len (dataSet[ 0 ]) = = 1 : # 所有特征已经用完 return majorityCnt(classList) bestFeat = chooseBestFeatureToSplit(dataSet) bestFeatLabel = labels[bestFeat] myTree = {bestFeatLabel: {}} del (labels[bestFeat]) featValues = [example[bestFeat] for example in dataSet] uniqueVals = set (featValues) for value in uniqueVals: subLabels = labels[:] # 为了不改变原始列表的内容复制了一下 myTree[bestFeatLabel][value] = createTree(splitDataSet(dataSet, bestFeat, value), subLabels) return myTree def main(): data, label = createDataSet() t1 = time.clock() myTree = createTree(data, label) t2 = time.clock() print myTree print 'execute for ' , t2 - t1 if __name__ = = '__main__' : main() |
运行结果如下:
1
2
|
{ 'no surfaceing' : { 0 : { 'flippers' : { 0 : 'maybe' , 1 : 'no' }}, 1 : { 'flippers' : { 0 : 'no' , 1 : 'yes' }}}} execute for 0.0103958394532 |
最后我们测试一下这个脚本即可,如果想把这个生成的决策树用图像画出来,也只是在需要在脚本里面定义一个plottree的函数即可。
希望本文所述对大家Python程序设计有所帮助。
原文链接:http://blog.csdn.net/gentelyang/article/details/75195630