本文实例讲述了Python实现的朴素贝叶斯分类器。分享给大家供大家参考,具体如下:
因工作中需要,自己写了一个朴素贝叶斯分类器。
对于未出现的属性,采取了拉普拉斯平滑,避免未出现的属性的概率为零导致整个条件概率都为零的情况出现。
朴素贝叶斯的基本原理网上很容易查到,这里不再叙述,直接附上代码
因工作中需要,自己写了一个朴素贝叶斯分类器。对于未出现的属性,采取了拉普拉斯平滑,避免未出现的属性的概率为零导致整个条件概率都为零的情况出现。
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
|
class NBClassify( object ): def __init__( self , fillNa = 1 ): self .fillNa = 1 pass def train( self , trainSet): # 计算每种类别的概率 # 保存所有tag的所有种类,及它们出现的频次 dictTag = {} for subTuple in trainSet: dictTag[ str (subTuple[ 1 ])] = 1 if str (subTuple[ 1 ]) not in dictTag.keys() else dictTag[ str (subTuple[ 1 ])] + 1 # 保存每个tag本身的概率 tagProbablity = {} totalFreq = sum ([value for value in dictTag.values()]) for key, value in dictTag.items(): tagProbablity[key] = value / totalFreq # print(tagProbablity) self .tagProbablity = tagProbablity ############################################################################## # 计算特征的条件概率 # 保存特征属性基本信息{特征1:{值1:出现5次, 值2:出现1次}, 特征2:{值1:出现1次, 值2:出现5次}} dictFeaturesBase = {} for subTuple in trainSet: for key, value in subTuple[ 0 ].items(): if key not in dictFeaturesBase.keys(): dictFeaturesBase[key] = {value: 1 } else : if value not in dictFeaturesBase[key].keys(): dictFeaturesBase[key][value] = 1 else : dictFeaturesBase[key][value] + = 1 # dictFeaturesBase = { # '职业': {'农夫': 1, '教师': 2, '建筑工人': 2, '护士': 1}, # '症状': {'打喷嚏': 3, '头痛': 3} # } dictFeatures = {}.fromkeys([key for key in dictTag]) for key in dictFeatures.keys(): dictFeatures[key] = {}.fromkeys([key for key in dictFeaturesBase]) for key, value in dictFeatures.items(): for subkey in value.keys(): value[subkey] = {}.fromkeys([x for x in dictFeaturesBase[subkey].keys()]) # dictFeatures = { # '感冒 ': {'症状': {'打喷嚏': None, '头痛': None}, '职业': {'护士': None, '农夫': None, '建筑工人': None, '教师': None}}, # '脑震荡': {'症状': {'打喷嚏': None, '头痛': None}, '职业': {'护士': None, '农夫': None, '建筑工人': None, '教师': None}}, # '过敏 ': {'症状': {'打喷嚏': None, '头痛': None}, '职业': {'护士': None, '农夫': None, '建筑工人': None, '教师': None}} # } # initialise dictFeatures for subTuple in trainSet: for key, value in subTuple[ 0 ].items(): dictFeatures[subTuple[ 1 ]][key][value] = 1 if dictFeatures[subTuple[ 1 ]][key][value] = = None else dictFeatures[subTuple[ 1 ]][key][value] + 1 # print(dictFeatures) # 将驯良样本中没有的项目,由None改为一个非常小的数值,表示其概率极小而并非是零 for tag, featuresDict in dictFeatures.items(): for featureName, fetureValueDict in featuresDict.items(): for featureKey, featureValues in fetureValueDict.items(): if featureValues = = None : fetureValueDict[featureKey] = 1 # 由特征频率计算特征的条件概率P(feature|tag) for tag, featuresDict in dictFeatures.items(): for featureName, fetureValueDict in featuresDict.items(): totalCount = sum ([x for x in fetureValueDict.values() if x ! = None ]) for featureKey, featureValues in fetureValueDict.items(): fetureValueDict[featureKey] = featureValues / totalCount if featureValues ! = None else None self .featuresProbablity = dictFeatures ############################################################################## def classify( self , featureDict): resultDict = {} # 计算每个tag的条件概率 for key, value in self .tagProbablity.items(): iNumList = [] for f, v in featureDict.items(): if self .featuresProbablity[key][f][v]: iNumList.append( self .featuresProbablity[key][f][v]) conditionPr = 1 for iNum in iNumList: conditionPr * = iNum resultDict[key] = value * conditionPr # 对比每个tag的条件概率的大小 resultList = sorted (resultDict.items(), key = lambda x:x[ 1 ], reverse = True ) return resultList[ 0 ][ 0 ] if __name__ = = '__main__' : trainSet = [ ({ "症状" : "打喷嚏" , "职业" : "护士" }, "感冒 " ), ({ "症状" : "打喷嚏" , "职业" : "农夫" }, "过敏 " ), ({ "症状" : "头痛" , "职业" : "建筑工人" }, "脑震荡" ), ({ "症状" : "头痛" , "职业" : "建筑工人" }, "感冒 " ), ({ "症状" : "打喷嚏" , "职业" : "教师" }, "感冒 " ), ({ "症状" : "头痛" , "职业" : "教师" }, "脑震荡" ), ] monitor = NBClassify() # trainSet is something like that [(featureDict, tag), ] monitor.train(trainSet) # 打喷嚏的建筑工人 # 请问他患上感冒的概率有多大? result = monitor.classify({ "症状" : "打喷嚏" , "职业" : "建筑工人" }) print (result) |
希望本文所述对大家Python程序设计有所帮助。
原文链接:http://blog.csdn.net/miangangzhen/article/details/50544726