本文实例讲述了Python基于高斯消元法计算线性方程组。分享给大家供大家参考,具体如下:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
|
#!/usr/bin/env python # coding=utf-8 # 以上的信息随自己的需要改动吧 def print_matrix( info, m ): # 输出矩阵 i = 0 ; j = 0 ; l = len (m) print info for i in range ( 0 , len ( m ) ): for j in range ( 0 , len ( m[i] ) ): if ( j = = l ): print ' |' , print '%6.4f' % m[i][j], print print def swap( a, b ): t = a; a = b; b = t def solve( ma, b, n ): global m; m = ma # 这里主要是方便最后矩阵的显示 global s; i = 0 ; j = 0 ; row_pos = 0 ; col_pos = 0 ; ik = 0 ; jk = 0 mik = 0.0 ; temp = 0.0 n = len ( m ) # row_pos 变量标记行循环, col_pos 变量标记列循环 print_matrix( "一开始 de 矩阵" , m ) while ( ( row_pos < n ) and ( col_pos < n ) ): print "位置:row_pos = %d, col_pos = %d" % (row_pos, col_pos) # 选主元 mik = - 1 for i in range ( row_pos, n ): if ( abs ( m[i][col_pos] ) > mik ): mik = abs ( m[i][col_pos] ) ik = i if ( mik = = 0.0 ): col_pos = col_pos + 1 continue print_matrix( "选主元" , m ) # 交换两行 if ( ik ! = row_pos ): for j in range ( col_pos, n ): swap( m[row_pos][j], m[ik][j] ) swap( m[row_pos][n], m[ik][n] ); # 区域之外? print_matrix( "交换两行" , m ) try : # 消元 m[row_pos][n] / = m[row_pos][col_pos] except ZeroDivisionError: # 除零异常 一般在无解或无穷多解的情况下出现…… return 0 ; j = n - 1 while ( j > = col_pos ): m[row_pos][j] / = m[row_pos][col_pos] j = j - 1 for i in range ( 0 , n ): if ( i = = row_pos ): continue m[i][n] - = m[row_pos][n] * m[i][col_pos] j = n - 1 while ( j > = col_pos ): m[i][j] - = m[row_pos][j] * m[i][col_pos] j = j - 1 print_matrix( "消元" , m ) row_pos = row_pos + 1 ; col_pos = col_pos + 1 for i in range ( row_pos, n ): if ( abs ( m[i][n] ) = = 0.0 ): return 0 return 1 if __name__ = = '__main__' : matrix = [[ 2.0 , 0.0 , - 2.0 , 0.0 ], [ 0.0 , 2.0 , - 1.0 , 0.0 ], [ 0.0 , 1.0 , 0.0 , 10.0 ]] i = 0 ; j = 0 ; n = 0 # 输出方程组 print_matrix( "一开始的矩阵" , matrix ) # 求解方程组, 并输出方程组的可解信息 ret = solve( matrix, 0 , 0 ) if ( ret! = 0 ): print "方程组有解\n" else : print "方 程组无唯一解或无解\n" # 输出方程组及其解 print_matrix( "方程组及其解" , matrix ) for i in range ( 0 , len ( m ) ): print "x[%d] = %6.4f" % (i, m[i][ len ( m )]) |
运行结果:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
|
一开始的矩阵 2.0000 0.0000 - 2.0000 | 0.0000 0.0000 2.0000 - 1.0000 | 0.0000 0.0000 1.0000 0.0000 | 10.0000 一开始 de 矩阵 2.0000 0.0000 - 2.0000 | 0.0000 0.0000 2.0000 - 1.0000 | 0.0000 0.0000 1.0000 0.0000 | 10.0000 位置:row_pos = 0 , col_pos = 0 选主元 2.0000 0.0000 - 2.0000 | 0.0000 0.0000 2.0000 - 1.0000 | 0.0000 0.0000 1.0000 0.0000 | 10.0000 交换两行 2.0000 0.0000 - 2.0000 | 0.0000 0.0000 2.0000 - 1.0000 | 0.0000 0.0000 1.0000 0.0000 | 10.0000 消元 1.0000 0.0000 - 1.0000 | 0.0000 0.0000 2.0000 - 1.0000 | 0.0000 0.0000 1.0000 0.0000 | 10.0000 位置:row_pos = 1 , col_pos = 1 选主元 1.0000 0.0000 - 1.0000 | 0.0000 0.0000 2.0000 - 1.0000 | 0.0000 0.0000 1.0000 0.0000 | 10.0000 交换两行 1.0000 0.0000 - 1.0000 | 0.0000 0.0000 2.0000 - 1.0000 | 0.0000 0.0000 1.0000 0.0000 | 10.0000 消元 1.0000 0.0000 - 1.0000 | 0.0000 0.0000 1.0000 - 0.5000 | 0.0000 0.0000 0.0000 0.5000 | 10.0000 位置:row_pos = 2 , col_pos = 2 选主元 1.0000 0.0000 - 1.0000 | 0.0000 0.0000 1.0000 - 0.5000 | 0.0000 0.0000 0.0000 0.5000 | 10.0000 交换两行 1.0000 0.0000 - 1.0000 | 0.0000 0.0000 1.0000 - 0.5000 | 0.0000 0.0000 0.0000 0.5000 | 10.0000 消元 1.0000 0.0000 0.0000 | 20.0000 0.0000 1.0000 0.0000 | 10.0000 0.0000 0.0000 1.0000 | 20.0000 方程组有解 方程组及其解 1.0000 0.0000 0.0000 | 20.0000 0.0000 1.0000 0.0000 | 10.0000 0.0000 0.0000 1.0000 | 20.0000 x[ 0 ] = 20.0000 x[ 1 ] = 10.0000 x[ 2 ] = 20.0000 |
希望本文所述对大家Python程序设计有所帮助。
原文链接:http://blog.csdn.net/zuyuanzhu/article/details/21184723