本文实例讲述了Python实现PS滤镜的旋转模糊功能。分享给大家供大家参考,具体如下:
这里用 Python 实现 PS 滤镜中的旋转模糊,具体的算法原理和效果可以参考附录相关介绍。Python代码如下:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
|
from skimage import img_as_float import matplotlib.pyplot as plt from skimage import io import numpy as np import numpy.matlib file_name = 'D:/Visual Effects/PS Algorithm/4.jpg' img = io.imread(file_name) img = img_as_float(img) img_out = img.copy() row, col, channel = img.shape xx = np.arange (col) yy = np.arange (row) x_mask = numpy.matlib.repmat (xx, row, 1 ) y_mask = numpy.matlib.repmat (yy, col, 1 ) y_mask = np.transpose(y_mask) center_y = (row - 1 ) / 2.0 center_x = (col - 1 ) / 2.0 R = np.sqrt((x_mask - center_x) * * 2 + (y_mask - center_y) * * 2 ) angle = np.arctan2(y_mask - center_y , x_mask - center_x) Num = 20 arr = ( np.arange(Num) + 1 ) / 100.0 for i in range (row): for j in range (col): T_angle = angle[i, j] + arr new_x = R[i, j] * np.cos(T_angle) + center_x new_y = R[i, j] * np.sin(T_angle) + center_y int_x = new_x.astype( int ) int_y = new_y.astype( int ) int_x[int_x > col - 1 ] = col - 1 int_x[int_x < 0 ] = 0 int_y[int_y < 0 ] = 0 int_y[int_y > row - 1 ] = row - 1 img_out[i,j, 0 ] = img[int_y, int_x, 0 ]. sum () / Num img_out[i,j, 1 ] = img[int_y, int_x, 1 ]. sum () / Num img_out[i,j, 2 ] = img[int_y, int_x, 2 ]. sum () / Num plt.figure( 1 ) plt.imshow(img) plt.axis( 'off' ) plt.figure( 2 ) plt.imshow(img_out) plt.axis( 'off' ) plt.show() |
附:PS 滤镜——旋转模糊
这里给出灰度图像的模糊算法,彩色图像只要分别对三个通道做模糊即可。
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
|
% % spin blur % 旋转模糊 clc; clear all ; close all ; I = imread( '4.jpg' ); I = double(I); % % % I_new = I; % % % for kk = 1 : 3 % % % I_new(:,:,kk) = Spin_blur_Fun(I(:,:,kk), 30 , 30 ); % % % end % % % imshow(I_new / 255 ) Image = I; Image = 0.2989 * I(:,:, 1 ) + 0.5870 * I(:,:, 2 ) + 0.1140 * I(:,:, 3 ); [row, col] = size(Image); Image_new = Image; Center_X = (col + 1 ) / 2 ; Center_Y = (row + 1 ) / 2 ; validPoint = 1 ; angle = 5 ; radian = angle * pi / 180 ; radian2 = radian * radian; Num = 30 ; Num2 = Num * Num; for i = 1 :row for j = 1 :col validPoint = 1 ; x0 = j - Center_X; y0 = Center_Y - i; x1 = x0; y1 = y0; Sum_Pixel = Image(i,j); for k = 1 :Num x0 = x1; y0 = y1; % % % 逆时针 % x1 = x0 - radian * y0 / Num - radian2 * x0 / Num2; % y1 = y0 + radian * x0 / Num - radian2 * y0 / Num2; % % % 顺时针 x1 = x0 + radian * y0 / Num - radian2 * x0 / Num2; y1 = y0 - radian * x0 / Num - radian2 * y0 / Num2; x = floor(x1 + Center_X); y = floor(Center_Y - y1); if (x> 1 && x<col && y> 1 && y<row) validPoint = validPoint + 1 ; Sum_Pixel = Sum_Pixel + Image(y,x); end end Image_new(i,j) = Sum_Pixel / validPoint; end end imshow(Image_new / 255 ); |
原图
效果图
效果图
希望本文所述对大家Python程序设计有所帮助。
原文链接:http://blog.csdn.net/matrix_space/article/details/78345382