本文实例讲述了Python实现PS图像调整颜色梯度效果。分享给大家供大家参考,具体如下:
这里用 Python 实现 PS 中的色彩图,可以看到颜色的各种渐变,具体的效果可以参考附录说明
和之前的程序相比,这里利用矩阵的运算替代了 for 循环,提升了运行的效率。
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
|
import numpy as np import matplotlib.pyplot as plt from skimage import io import numpy.matlib from skimage import img_as_float file_name = 'D:/Visual Effects/PS Algorithm/4.jpg' ; img = io.imread(file_name) img = img_as_float(img) row, col, channel = img.shape rNW = 0.5 rNE = 1.0 rSW = 1.0 rSE = 0.0 gNW = 0.0 gNE = 0.5 gSW = 0.0 gSE = 1.0 bNW = 1.0 bNE = 0.0 bSW = 1.0 bSE = 0.0 xx = np.arange (col) yy = np.arange (row) x_mask = numpy.matlib.repmat (xx, row, 1 ) y_mask = numpy.matlib.repmat (yy, col, 1 ) y_mask = np.transpose(y_mask) fx = x_mask * 1.0 / col fy = y_mask * 1.0 / row p = rNW + (rNE - rNW) * fx q = rSW + (rSE - rSW) * fx r = ( p + (q - p) * fy ) r[r< 0 ] = 0 r[r> 1 ] = 1 p = gNW + (gNE - gNW) * fx q = gSW + (gSE - gSW) * fx g = ( p + (q - p) * fy ) g[g< 0 ] = 0 g[g> 1 ] = 1 p = bNW + (bNE - bNW) * fx q = bSW + (bSE - bSW) * fx b = ( p + (q - p) * fy ) b[b< 0 ] = 0.0 b[b> 1 ] = 1.0 img[:, :, 0 ] = r img[:, :, 1 ] = g img[:, :, 2 ] = b plt.figure( 1 ) plt.imshow(img) plt.axis( 'off' ); plt.show(); |
附录:PS 色调— —颜色梯度
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
|
clc; clear all ; close all ; addpath( 'E:\PhotoShop Algortihm\Image Processing\PS Algorithm' ); I = imread( '4.jpg' ); Image = double(I) / 255 ; [height, width, depth] = size(Image); rNW = 1.0 ; gNW = 0.0 ; bNW = 0.0 ; rNE = 1.0 ; gNE = 1.0 ; bNE = 0.0 ; rSW = 0.0 ; gSW = 0 ; bSW = 1.0 ; rSE = 0.0 ; gSE = 1.0 ; bSE = 0.0 ; Img_new = Image; for ii = 1 :height for jj = 1 :width fx = jj / width; fy = ii / height; p = rNW + (rNE - rNW) * fx; q = rSW + (rSE - rSW) * fx; r = ( p + (q - p) * fy ); r = min ( max (r, 0 ), 1 ); p = gNW + (gNE - gNW) * fx; q = gSW + (gSE - gSW) * fx; g = ( p + (q - p) * fy ); g = min ( max (g, 0 ) , 1 ); p = bNW + (bNE - bNW) * fx; q = bSW + (bSE - bSW) * fx; b = ( p + (q - p) * fy ); b = min ( max (b, 0 ), 1 ); Img_new(ii, jj, 1 ) = r; Img_new(ii, jj, 2 ) = g; Img_new(ii, jj, 3 ) = b; end end imshow(Img_new); imwrite(Img_new, 'out.jpg' ); |
参考来源:http://www.jhlabs.com/index.html
本例Python运行效果图:
原图:
运行效果:
希望本文所述对大家Python程序设计有所帮助。
原文链接:http://blog.csdn.net/matrix_space/article/details/72302964