本文实例讲述了Python实现PS滤镜特效Marble Filter玻璃条纹扭曲效果。分享给大家供大家参考,具体如下:
这里用 Python 实现 PS 滤镜特效,Marble Filter, 这种滤镜使图像产生不规则的扭曲,看起来像某种玻璃条纹, 具体的代码如下:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
|
import numpy as np import math import numpy.matlib from skimage import io import random from skimage import img_as_float import matplotlib.pyplot as plt def Init_arr(): B = 256 P = np.zeros((B + B + 2 , 1 )) g1 = np.zeros((B + B + 2 , 1 )) g2 = np.zeros((B + B + 2 , 2 )) g3 = np.zeros((B + B + 2 , 3 )) N_max = 1e6 for i in range (B + 1 ): P[i] = i g1[i] = (((math.floor(random.random() * N_max)) % ( 2 * B)) - B) * 1.0 / B g2[i, :] = (np.mod((np.floor(np.random.rand( 1 , 2 ) * N_max)), ( 2 * B)) - B) * 1.0 / B g2[i, :] = g2[i, :] / np. sum (g2[i, :] * * 2 ) g3[i, :] = (np.mod((np.floor(np.random.rand( 1 , 3 ) * N_max)), ( 2 * B)) - B) * 1.0 / B g3[i, :] = g3[i, :] / np. sum (g3[i, :] * * 2 ) for i in range (B, - 1 , - 1 ): k = P[i] j = math.floor(random.random() * N_max) % B P [i] = P [j] P [j] = k P[B + 1 : 2 * B + 2 ] = P[ 0 :B + 1 ]; g1[B + 1 : 2 * B + 2 ] = g1[ 0 :B + 1 ]; g2[B + 1 : 2 * B + 2 , :] = g2[ 0 :B + 1 , :] g3[B + 1 : 2 * B + 2 , :] = g3[ 0 :B + 1 , :] P = P.astype( int ) return P, g1, g2, g3 def Noise_2(x_val, y_val, P, g2): BM = 255 N = 4096 t = x_val + N bx0 = ((np.floor(t).astype( int )) & BM) + 1 bx1 = ((bx0 + 1 ).astype( int ) & BM) + 1 rx0 = t - np.floor(t) rx1 = rx0 - 1.0 t = y_val + N by0 = ((np.floor(t).astype( int )) & BM) + 1 by1 = ((bx0 + 1 ).astype( int ) & BM) + 1 ry0 = t - np.floor(t) ry1 = rx0 - 1.0 sx = rx0 * rx0 * ( 3 - 2.0 * rx0) sy = ry0 * ry0 * ( 3 - 2.0 * ry0) row, col = x_val.shape q1 = np.zeros((row, col , 2 )) q2 = q1.copy() q3 = q1.copy() q4 = q1.copy() for i in range (row): for j in range (col): ind_i = P[bx0[i, j]] ind_j = P[bx1[i, j]] b00 = P[ind_i + by0[i, j]] b01 = P[ind_i + by1[i, j]] b10 = P[ind_j + by0[i, j]] b11 = P[ind_j + by1[i, j]] q1[i, j, :] = g2[b00, :] q2[i, j, :] = g2[b10, :] q3[i, j, :] = g2[b01, :] q4[i, j, :] = g2[b11, :] u1 = rx0 * q1[:, :, 0 ] + ry0 * q1[:, :, 1 ] v1 = rx1 * q2[:, :, 0 ] + ry1 * q2[:, :, 1 ] a = u1 + sx * (v1 - u1) u2 = rx0 * q3[:, :, 0 ] + ry0 * q3[:, :, 1 ] v2 = rx1 * q4[:, :, 0 ] + ry1 * q4[:, :, 1 ] b = u2 + sx * (v2 - u2) out = (a + sy * (b - a)) * 1.5 return out file_name = 'D:/Visual Effects/PS Algorithm/4.jpg' ; img = io.imread(file_name) img = img_as_float(img) row, col, channel = img.shape xScale = 25.0 yScale = 25.0 turbulence = 0.25 xx = np.arange (col) yy = np.arange (row) x_mask = numpy.matlib.repmat (xx, row, 1 ) y_mask = numpy.matlib.repmat (yy, col, 1 ) y_mask = np.transpose(y_mask) x_val = x_mask / xScale y_val = y_mask / yScale Index = np.arange( 256 ) sin_T = - yScale * np.sin( 2 * math.pi * (Index) / 255 * turbulence); cos_T = xScale * np.cos( 2 * math.pi * (Index) / 255 * turbulence) P, g1, g2, g3 = Init_arr() Noise_out = Noise_2(x_val, y_val, P, g2) Noise_out = 127 * (Noise_out + 1 ) Dis = np.floor(Noise_out) Dis[Dis> 255 ] = 255 Dis[Dis< 0 ] = 0 Dis = Dis.astype( int ) img_out = img.copy() for ii in range (row): for jj in range (col): new_x = jj + sin_T[Dis[ii, jj]] new_y = ii + cos_T[Dis[ii, jj]] if (new_x > 0 and new_x < col - 1 and new_y > 0 and new_y < row - 1 ): int_x = int (new_x) int_y = int (new_y) img_out[ii, jj, :] = img[int_y, int_x, :] plt.figure( 1 ) plt.title( 'www.zyiz.net' ) plt.imshow(img) plt.axis( 'off' ); plt.figure( 2 ) plt.title( 'www.zyiz.net' ) plt.imshow(img_out) plt.axis( 'off' ); plt.show(); |
运行效果:
附:PS 滤镜 Marble 效果原理
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
|
clc; clear all ; close all ; addpath( 'E:\PhotoShop Algortihm\Image Processing\PS Algorithm' ); I = imread( '4.jpg' ); I = double(I); Image = I / 255 ; xScale = 20 ; yScale = 20 ; amount = 1 ; turbulence = 0.25 ; Image_new = Image; [height, width, depth] = size(Image); Index = 1 : 256 ; sin_T = - yScale * sin( 2 * pi * (Index - 1 ) / 256 * turbulence); cos_T = xScale * cos( 2 * pi * (Index - 1 ) / 256 * turbulence); [ind, g1, g2, g3] = init_arr(); for ii = 1 :height % % [ind, g1, g2, g3] = init_arr(); for jj = 1 :width dis = min ( max ( floor( 127 * ( 1 + Noise2(jj / xScale, ii / yScale, ind, g2))), 1 ), 256 ); x = jj + sin_T(dis); y = ii + cos_T(dis); % % if (x< = 1 ) x = 1 ; end % % if (x> = width) x = width - 1 ; end; % % if (y> = height) y = height - 1 ; end; % % if (y< 1 ) y = 1 ; end; % % if (x< = 1 ) continue ; end if (x> = width) continue ; end; if (y> = height) continue ; end; if (y< 1 ) continue ; end; x1 = floor(x); y1 = floor(y); p = x - x1; q = y - y1; Image_new(ii,jj,:) = ( 1 - p) * ( 1 - q) * Image(y1,x1,:) + p * ( 1 - q) * Image(y1,x1 + 1 ,:)... + q * ( 1 - p) * Image(y1 + 1 ,x1,:) + p * q * Image(y1 + 1 ,x1 + 1 ,:); end end imshow(Image_new) imwrite(Image_new, 'out.jpg' ); |
参考来源:http://www.jhlabs.com/index.html
希望本文所述对大家Python程序设计有所帮助。
原文链接:http://blog.csdn.net/matrix_space/article/details/72283287