本文研究的主要是Python验证码识别的相关代码,具体如下。
Talk is cheap, show you the Code!
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
|
import numpy as np import matplotlib.pyplot as plt from sklearn.cluster import KMeans from PIL import Image #打开图像 im = np.array(Image. open ( 'yzm.png' )) #得到图像3个维度 h,w,san = im.shape X = [(h - x,y) for x in range (h) for y in range (w) if im[x][y][ 2 ]< 200 ] #将X转换成numpy的array类型,方便后续运算操作 X = np.array(X) n_clusters = 4 k_means = KMeans(init = 'k-means++' ,n_clusters = n_clusters) k_means.fit(X) k_means_labels = k_means.labels_ k_means_cluster_centers = k_means.cluster_centers_ k_means_labels_unique = np.unique(k_means_labels) colors = [ '#4EACC5' , '#FF9C34' , '#4E9A06' , '#FF3300' ] plt.figure() plt.hold( True ) for k,col in zip ( range (n_clusters),colors): my_members = k_means_labels = = k cluster_center = k_means_cluster_centers[k] plt.plot(X[my_members, 1 ],X[my_members, 0 ], 'w' ,markerfacecolor = col,marker = '.' ) plt.plot(cluster_center[ 1 ],cluster_center[ 0 ], 'o' ,markerfacecolor = col,markeredgecolor = 'k' ,markersize = 6 ) plt.title( 'KMeans' ) plt.grid( True ) plt.show() |
总结
以上就是本文关于python验证码识别实例代码的全部内容,希望对大家有所帮助。感兴趣的朋友可以继续参阅本站其他相关专题,如有不足之处,欢迎留言指出。感谢朋友们对本站的支持!
原文链接:http://blog.csdn.net/linzch3/article/details/66472901