yield的功能类似于return,但是不同之处在于它返回的是生成器。
生成器
生成器是通过一个或多个yield表达式构成的函数,每一个生成器都是一个迭代器(但是迭代器不一定是生成器)。
如果一个函数包含yield关键字,这个函数就会变为一个生成器。
生成器并不会一次返回所有结果,而是每次遇到yield关键字后返回相应结果,并保留函数当前的运行状态,等待下一次的调用。
由于生成器也是一个迭代器,那么它就应该支持next方法来获取下一个值。
基本操作
1
2
3
4
|
# 通过`yield`来创建生成器 def func(): for i in xrange ( 10 ); yield i |
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
|
# 通过列表来创建生成器 [i for i in xrange ( 10 )] # 通过`yield`来创建生成器 def func(): for i in xrange ( 10 ); yield i # 通过列表来创建生成器 [i for i in xrange ( 10 )] # 调用如下 >>> f = func() >>> f # 此时生成器还没有运行 <generator object func at 0x7fe01a853820 > >>> f. next () # 当i=0时,遇到yield关键字,直接返回 >>> f. next () # 继续上一次执行的位置,进入下一层循环 ... >>> f. next () >>> f. next () # 当执行完最后一次循环后,结束yield语句,生成StopIteration异常 Traceback (most recent call last): File "<stdin>" , line 1 , in <module> StopIteration >>> # 调用如下 >>> f = func() >>> f # 此时生成器还没有运行 <generator object func at 0x7fe01a853820 > >>> f. next () # 当i=0时,遇到yield关键字,直接返回 >>> f. next () # 继续上一次执行的位置,进入下一层循环 ... >>> f. next () >>> f. next () # 当执行完最后一次循环后,结束yield语句,生成StopIteration异常 Traceback (most recent call last): File "<stdin>" , line 1 , in <module> StopIteration >>> |
除了next函数,生成器还支持send函数。该函数可以向生成器传递参数。
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
|
>>> def func(): ... n = 0 ... while 1 : ... n = yield n #可以通过send函数向n赋值 ... >>> f = func() >>> f. next () # 默认情况下n为0 >>> f.send( 1 ) #n赋值1 >>> f.send( 2 ) >>> >>> def func(): ... n = 0 ... while 1 : ... n = yield n #可以通过send函数向n赋值 ... >>> f = func() >>> f. next () # 默认情况下n为0 >>> f.send( 1 ) #n赋值1 >>> f.send( 2 ) >>> |
应用
最经典的例子,生成无限序列。
常规的解决方法是,生成一个满足要求的很大的列表,这个列表需要保存在内存中,很明显内存限制了这个问题。
1
2
3
4
5
6
7
8
|
def get_primes(start): for element in magical_infinite_range(start): if is_prime(element): return element def get_primes(start): for element in magical_infinite_range(start): if is_prime(element): return element |
如果使用生成器就不需要返回整个列表,每次都只是返回一个数据,避免了内存的限制问题。
1
2
3
4
5
6
7
8
9
10
|
def get_primes(number): while True : if is_prime(number): yield number number + = 1 def get_primes(number): while True : if is_prime(number): yield number number + = 1 |
生成器源码分析
生成器的源码在Objects/genobject.c。
调用栈
在解释生成器之前,需要讲解一下Python虚拟机的调用原理。
Python虚拟机有一个栈帧的调用栈,其中栈帧的是PyFrameObject,位于Include/frameobject.h。
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
|
typedef struct _frame { PyObject_VAR_HEAD struct _frame * f_back; / * previous frame, or NULL * / PyCodeObject * f_code; / * code segment * / PyObject * f_builtins; / * builtin symbol table (PyDictObject) * / PyObject * f_globals; / * global symbol table (PyDictObject) * / PyObject * f_locals; / * local symbol table ( any mapping) * / PyObject * * f_valuestack; / * points after the last local * / / * Next free slot in f_valuestack. Frame creation sets to f_valuestack. Frame evaluation usually NULLs it, but a frame that yields sets it to the current stack top. * / PyObject * * f_stacktop; PyObject * f_trace; / * Trace function * / / * If an exception is raised in this frame, the next three are used to * record the exception info ( if any ) originally in the thread state. See * comments before set_exc_info() - - it's not obvious. * Invariant: if _type is NULL, then so are _value and _traceback. * Desired invariant: all three are NULL, or all three are non - NULL. That * one isn't currently true, but "should be" . * / PyObject * f_exc_type, * f_exc_value, * f_exc_traceback; PyThreadState * f_tstate; int f_lasti; / * Last instruction if called * / / * Call PyFrame_GetLineNumber() instead of reading this field directly. As of 2.3 f_lineno is only valid when tracing is active (i.e. when f_trace is set ). At other times we use PyCode_Addr2Line to calculate the line from the current bytecode index. * / int f_lineno; / * Current line number * / int f_iblock; / * index in f_blockstack * / PyTryBlock f_blockstack[CO_MAXBLOCKS]; / * for try and loop blocks * / PyObject * f_localsplus[ 1 ]; / * locals + stack, dynamically sized * / } PyFrameObject; typedef struct _frame { PyObject_VAR_HEAD struct _frame * f_back; / * previous frame, or NULL * / PyCodeObject * f_code; / * code segment * / PyObject * f_builtins; / * builtin symbol table (PyDictObject) * / PyObject * f_globals; / * global symbol table (PyDictObject) * / PyObject * f_locals; / * local symbol table ( any mapping) * / PyObject * * f_valuestack; / * points after the last local * / / * Next free slot in f_valuestack. Frame creation sets to f_valuestack. Frame evaluation usually NULLs it, but a frame that yields sets it to the current stack top. * / PyObject * * f_stacktop; PyObject * f_trace; / * Trace function * / / * If an exception is raised in this frame, the next three are used to * record the exception info ( if any ) originally in the thread state. See * comments before set_exc_info() - - it's not obvious. * Invariant: if _type is NULL, then so are _value and _traceback. * Desired invariant: all three are NULL, or all three are non - NULL. That * one isn't currently true, but "should be" . * / PyObject * f_exc_type, * f_exc_value, * f_exc_traceback; PyThreadState * f_tstate; int f_lasti; / * Last instruction if called * / / * Call PyFrame_GetLineNumber() instead of reading this field directly. As of 2.3 f_lineno is only valid when tracing is active (i.e. when f_trace is set ). At other times we use PyCode_Addr2Line to calculate the line from the current bytecode index. * / int f_lineno; / * Current line number * / int f_iblock; / * index in f_blockstack * / PyTryBlock f_blockstack[CO_MAXBLOCKS]; / * for try and loop blocks * / PyObject * f_localsplus[ 1 ]; / * locals + stack, dynamically sized * / } PyFrameObject; |
栈帧保存了给出代码的的信息和上下文,其中包含最后执行的指令,全局和局部命名空间,异常状态等信息。f_valueblock保存了数据,b_blockstack保存了异常和循环控制方法。
举一个例子来说明,
1
2
3
4
5
6
7
8
|
def foo(): x = 1 def bar(y): z = y + 2 # def foo(): x = 1 def bar(y): z = y + 2 # |
那么,相应的调用栈如下,一个py文件,一个类,一个函数都是一个代码块,对应者一个Frame,保存着上下文环境以及字节码指令。
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
|
c - - - - - - - - - - - - - - - - - - - - - - - - - - - a | bar Frame | - > block stack: [] l | (newest) | - > data stack: [ 1 , 2 ] l - - - - - - - - - - - - - - - - - - - - - - - - - - - | foo Frame | - > block stack: [] s | | - > data stack: [.bar at 0x10d389680 >, 1 ] t - - - - - - - - - - - - - - - - - - - - - - - - - - - a | main (module) Frame | - > block stack: [] c | (oldest) | - > data stack: [] k - - - - - - - - - - - - - - - - - - - - - - - - - - - c - - - - - - - - - - - - - - - - - - - - - - - - - - - a | bar Frame | - > block stack: [] l | (newest) | - > data stack: [ 1 , 2 ] l - - - - - - - - - - - - - - - - - - - - - - - - - - - | foo Frame | - > block stack: [] s | | - > data stack: [.bar at 0x10d389680 >, 1 ] t - - - - - - - - - - - - - - - - - - - - - - - - - - - a | main (module) Frame | - > block stack: [] c | (oldest) | - > data stack: [] k - - - - - - - - - - - - - - - - - - - - - - - - - - - |
每一个栈帧都拥有自己的数据栈和block栈,独立的数据栈和block栈使得解释器可以中断和恢复栈帧(生成器正式利用这点)。
Python代码首先被编译为字节码,再由Python虚拟机来执行。一般来说,一条Python语句对应着多条字节码(由于每条字节码对应着一条C语句,而不是一个机器指令,所以不能按照字节码的数量来判断代码性能)。
调用dis模块可以分析字节码,
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
|
from dis import dis dis(foo) 0 LOAD_CONST 1 ( 1 ) # 加载常量1 3 STORE_FAST 0 (x) # x赋值为1 6 LOAD_CONST 2 (<code>) # 加载常量2 9 MAKE_FUNCTION 0 # 创建函数 12 STORE_FAST 1 (bar) 15 LOAD_FAST 1 (bar) 18 LOAD_FAST 0 (x) 21 CALL_FUNCTION 1 # 调用函数 24 RETURN_VALUE < / code> from dis import dis dis(foo) 0 LOAD_CONST 1 ( 1 ) # 加载常量1 3 STORE_FAST 0 (x) # x赋值为1 6 LOAD_CONST 2 (<code>) # 加载常量2 9 MAKE_FUNCTION 0 # 创建函数 12 STORE_FAST 1 (bar) 15 LOAD_FAST 1 (bar) 18 LOAD_FAST 0 (x) 21 CALL_FUNCTION 1 # 调用函数 24 RETURN_VALUE < / code> |
其中,
第一行为代码行号;
第二行为偏移地址;
第三行为字节码指令;
第四行为指令参数;
第五行为参数解释。
第一行为代码行号;
第二行为偏移地址;
第三行为字节码指令;
第四行为指令参数;
第五行为参数解释。
生成器源码分析
由了上面对于调用栈的理解,就可以很容易的明白生成器的具体实现。
生成器的源码位于object/genobject.c。
生成器的创建
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
|
PyObject * PyGen_New(PyFrameObject * f) { PyGenObject * gen = PyObject_GC_New(PyGenObject, &PyGen_Type); # 创建生成器对象 if (gen = = NULL) { Py_DECREF(f); return NULL; } gen - >gi_frame = f; # 赋予代码块 Py_INCREF(f - >f_code); # 引用计数+1 gen - >gi_code = (PyObject * )(f - >f_code); gen - >gi_running = 0 ; # 0表示为执行,也就是生成器的初始状态 gen - >gi_weakreflist = NULL; _PyObject_GC_TRACK(gen); # GC跟踪 return (PyObject * )gen; } PyObject * PyGen_New(PyFrameObject * f) { PyGenObject * gen = PyObject_GC_New(PyGenObject, &PyGen_Type); # 创建生成器对象 if (gen = = NULL) { Py_DECREF(f); return NULL; } gen - >gi_frame = f; # 赋予代码块 Py_INCREF(f - >f_code); # 引用计数+1 gen - >gi_code = (PyObject * )(f - >f_code); gen - >gi_running = 0 ; # 0表示为执行,也就是生成器的初始状态 gen - >gi_weakreflist = NULL; _PyObject_GC_TRACK(gen); # GC跟踪 return (PyObject * )gen; } |
send与next
next与send函数,如下
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
|
static PyObject * gen_iternext(PyGenObject * gen) { return gen_send_ex(gen, NULL, 0 ); } static PyObject * gen_send(PyGenObject * gen, PyObject * arg) { return gen_send_ex(gen, arg, 0 ); } static PyObject * gen_iternext(PyGenObject * gen) { return gen_send_ex(gen, NULL, 0 ); } static PyObject * gen_send(PyGenObject * gen, PyObject * arg) { return gen_send_ex(gen, arg, 0 ); } |
从上面的代码中可以看到,send和next都是调用的同一函数gen_send_ex,区别在于是否带有参数。
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
|
static PyObject * gen_send_ex(PyGenObject * gen, PyObject * arg, int exc) { PyThreadState * tstate = PyThreadState_GET(); PyFrameObject * f = gen - >gi_frame; PyObject * result; if (gen - >gi_running) { # 判断生成器是否已经运行 PyErr_SetString(PyExc_ValueError, "generator already executing" ); return NULL; } if (f = = NULL || f - >f_stacktop = = NULL) { # 如果代码块为空或调用栈为空,则抛出StopIteration异常 / * Only set exception if called from send() * / if (arg && !exc) PyErr_SetNone(PyExc_StopIteration); return NULL; } if (f - >f_lasti = = - 1 ) { # f_lasti=1 代表首次执行 if (arg && arg ! = Py_None) { # 首次执行不允许带有参数 PyErr_SetString(PyExc_TypeError, "can't send non-None value to a " "just-started generator" ); return NULL; } } else { / * Push arg onto the frame's value stack * / result = arg ? arg : Py_None; Py_INCREF(result); # 该参数引用计数+1 * (f - >f_stacktop + + ) = result; # 参数压栈 } / * Generators always return to their most recent caller, not * necessarily their creator. * / f - >f_tstate = tstate; Py_XINCREF(tstate - >frame); assert (f - >f_back = = NULL); f - >f_back = tstate - >frame; gen - >gi_running = 1 ; # 修改生成器执行状态 result = PyEval_EvalFrameEx(f, exc); # 执行字节码 gen - >gi_running = 0 ; # 恢复为未执行状态 / * Don't keep the reference to f_back any longer than necessary. It * may keep a chain of frames alive or it could create a reference * cycle. * / assert (f - >f_back = = tstate - >frame); Py_CLEAR(f - >f_back); / * Clear the borrowed reference to the thread state * / f - >f_tstate = NULL; / * If the generator just returned (as opposed to yielding), signal * that the generator is exhausted. * / if (result = = Py_None && f - >f_stacktop = = NULL) { Py_DECREF(result); result = NULL; / * Set exception if not called by gen_iternext() * / if (arg) PyErr_SetNone(PyExc_StopIteration); } if (!result || f - >f_stacktop = = NULL) { / * generator can't be rerun, so release the frame * / Py_DECREF(f); gen - >gi_frame = NULL; } return result; } static PyObject * gen_send_ex(PyGenObject * gen, PyObject * arg, int exc) { PyThreadState * tstate = PyThreadState_GET(); PyFrameObject * f = gen - >gi_frame; PyObject * result; if (gen - >gi_running) { # 判断生成器是否已经运行 PyErr_SetString(PyExc_ValueError, "generator already executing" ); return NULL; } if (f = = NULL || f - >f_stacktop = = NULL) { # 如果代码块为空或调用栈为空,则抛出StopIteration异常 / * Only set exception if called from send() * / if (arg && !exc) PyErr_SetNone(PyExc_StopIteration); return NULL; } if (f - >f_lasti = = - 1 ) { # f_lasti=1 代表首次执行 if (arg && arg ! = Py_None) { # 首次执行不允许带有参数 PyErr_SetString(PyExc_TypeError, "can't send non-None value to a " "just-started generator" ); return NULL; } } else { / * Push arg onto the frame's value stack * / result = arg ? arg : Py_None; Py_INCREF(result); # 该参数引用计数+1 * (f - >f_stacktop + + ) = result; # 参数压栈 } / * Generators always return to their most recent caller, not * necessarily their creator. * / f - >f_tstate = tstate; Py_XINCREF(tstate - >frame); assert (f - >f_back = = NULL); f - >f_back = tstate - >frame; gen - >gi_running = 1 ; # 修改生成器执行状态 result = PyEval_EvalFrameEx(f, exc); # 执行字节码 gen - >gi_running = 0 ; # 恢复为未执行状态 / * Don't keep the reference to f_back any longer than necessary. It * may keep a chain of frames alive or it could create a reference * cycle. * / assert (f - >f_back = = tstate - >frame); Py_CLEAR(f - >f_back); / * Clear the borrowed reference to the thread state * / f - >f_tstate = NULL; / * If the generator just returned (as opposed to yielding), signal * that the generator is exhausted. * / if (result = = Py_None && f - >f_stacktop = = NULL) { Py_DECREF(result); result = NULL; / * Set exception if not called by gen_iternext() * / if (arg) PyErr_SetNone(PyExc_StopIteration); } if (!result || f - >f_stacktop = = NULL) { / * generator can't be rerun, so release the frame * / Py_DECREF(f); gen - >gi_frame = NULL; } return result; } |
字节码的执行
PyEval_EvalFrameEx函数的功能为执行字节码并返回结果。
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
|
# 主要流程如下, for (;;) { switch(opcode) { # opcode为操作码,对应着各种操作 case NOP: goto fast_next_opcode; ... ... case YIELD_VALUE: # 如果操作码是yield retval = POP(); f - >f_stacktop = stack_pointer; why = WHY_YIELD; goto fast_yield; # 利用goto跳出循环 } } fast_yield: ... return vetval; # 返回结果 # 主要流程如下, for (;;) { switch(opcode) { # opcode为操作码,对应着各种操作 case NOP: goto fast_next_opcode; ... ... case YIELD_VALUE: # 如果操作码是yield retval = POP(); f - >f_stacktop = stack_pointer; why = WHY_YIELD; goto fast_yield; # 利用goto跳出循环 } } fast_yield: ... return vetval; # 返回结果 |
举一个例子,f_back上一个Frame,f_lasti上一次执行的指令的偏移量,
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
|
import sys from dis import dis def func(): f = sys._getframe( 0 ) print f.f_lasti print f.f_back yield 1 print f.f_lasti print f.f_back yield 2 a = func() dis(func) a. next () a. next () import sys from dis import dis def func(): f = sys._getframe( 0 ) print f.f_lasti print f.f_back yield 1 print f.f_lasti print f.f_back yield 2 a = func() dis(func) a. next () a. next () |
结果如下,其中第三行的英文为操作码,对应着上面的opcode,每次switch都是在不同的opcode之间进行选择。
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
|
Python 0 LOAD_GLOBAL 0 (sys) 3 LOAD_ATTR 1 (_getframe) 6 LOAD_CONST 1 ( 0 ) 9 CALL_FUNCTION 1 12 STORE_FAST 0 (f) 15 LOAD_FAST 0 (f) 18 LOAD_ATTR 2 (f_lasti) 21 PRINT_ITEM 22 PRINT_NEWLINE 23 LOAD_FAST 0 (f) 26 LOAD_ATTR 3 (f_back) 29 PRINT_ITEM 30 PRINT_NEWLINE 31 LOAD_CONST 2 ( 1 ) 34 YIELD_VALUE # 此时操作码为YIELD_VALUE,直接跳转上述goto语句,此时f_lasti为当前指令,f_back为当前frame 35 POP_TOP 36 LOAD_FAST 0 (f) 39 LOAD_ATTR 2 (f_lasti) 42 PRINT_ITEM 43 PRINT_NEWLINE 44 LOAD_FAST 0 (f) 47 LOAD_ATTR 3 (f_back) 50 PRINT_ITEM 51 PRINT_NEWLINE 52 LOAD_CONST 3 ( 2 ) 55 YIELD_VALUE 56 POP_TOP 57 LOAD_CONST 0 ( None ) 60 RETURN_VALUE <frame object at 0x7fa75fcebc20 > #和下面的frame相同,属于同一个frame,也就是说在同一个函数(命名空间)内,frame是同一个。 <frame object at 0x7fa75fcebc20 > 0 LOAD_GLOBAL 0 (sys) 3 LOAD_ATTR 1 (_getframe) 6 LOAD_CONST 1 ( 0 ) 9 CALL_FUNCTION 1 12 STORE_FAST 0 (f) 15 LOAD_FAST 0 (f) 18 LOAD_ATTR 2 (f_lasti) 21 PRINT_ITEM 22 PRINT_NEWLINE 23 LOAD_FAST 0 (f) 26 LOAD_ATTR 3 (f_back) 29 PRINT_ITEM 30 PRINT_NEWLINE 31 LOAD_CONST 2 ( 1 ) 34 YIELD_VALUE # 此时操作码为YIELD_VALUE,直接跳转上述goto语句,此时f_lasti为当前指令,f_back为当前frame 35 POP_TOP 36 LOAD_FAST 0 (f) 39 LOAD_ATTR 2 (f_lasti) 42 PRINT_ITEM 43 PRINT_NEWLINE 44 LOAD_FAST 0 (f) 47 LOAD_ATTR 3 (f_back) 50 PRINT_ITEM 51 PRINT_NEWLINE 52 LOAD_CONST 3 ( 2 ) 55 YIELD_VALUE 56 POP_TOP 57 LOAD_CONST 0 ( None ) 60 RETURN_VALUE <frame object at 0x7fa75fcebc20 > #和下面的frame相同,属于同一个frame,也就是说在同一个函数(命名空间)内,frame是同一个。 <frame object at 0x7fa75fcebc20 > |
总结
以上所述是小编给大家介绍的Python yield与实现方法代码分析,希望对大家有所帮助,如果大家有任何疑问请给我留言,小编会及时回复大家的。在此也非常感谢大家对服务器之家网站的支持!