利用卷积神经网络训练图像数据分为以下几个步骤
1.读取图片文件
2.产生用于训练的批次
3.定义训练的模型(包括初始化参数,卷积、池化层等参数、网络)
4.训练
1 读取图片文件
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
|
def get_files(filename): class_train = [] label_train = [] for train_class in os.listdir(filename): for pic in os.listdir(filename + train_class): class_train.append(filename + train_class + '/' + pic) label_train.append(train_class) temp = np.array([class_train,label_train]) temp = temp.transpose() #shuffle the samples np.random.shuffle(temp) #after transpose, images is in dimension 0 and label in dimension 1 image_list = list (temp[:, 0 ]) label_list = list (temp[:, 1 ]) label_list = [ int (i) for i in label_list] #print(label_list) return image_list,label_list |
这里文件名作为标签,即类别(其数据类型要确定,后面要转为tensor类型数据)。
然后将image和label转为list格式数据,因为后边用到的的一些tensorflow函数接收的是list格式数据。
2 产生用于训练的批次
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
|
def get_batches(image,label,resize_w,resize_h,batch_size,capacity): #convert the list of images and labels to tensor image = tf.cast(image,tf.string) label = tf.cast(label,tf.int64) queue = tf.train.slice_input_producer([image,label]) label = queue[ 1 ] image_c = tf.read_file(queue[ 0 ]) image = tf.image.decode_jpeg(image_c,channels = 3 ) #resize image = tf.image.resize_image_with_crop_or_pad(image,resize_w,resize_h) #(x - mean) / adjusted_stddev image = tf.image.per_image_standardization(image) image_batch,label_batch = tf.train.batch([image,label], batch_size = batch_size, num_threads = 64 , capacity = capacity) images_batch = tf.cast(image_batch,tf.float32) labels_batch = tf.reshape(label_batch,[batch_size]) return images_batch,labels_batch |
首先使用tf.cast转化为tensorflow数据格式,使用tf.train.slice_input_producer实现一个输入的队列。
label不需要处理,image存储的是路径,需要读取为图片,接下来的几步就是读取路径转为图片,用于训练。
CNN对图像大小是敏感的,第10行图片resize处理为大小一致,12行将其标准化,即减去所有图片的均值,方便训练。
接下来使用tf.train.batch函数产生训练的批次。
最后将产生的批次做数据类型的转换和shape的处理即可产生用于训练的批次。
3 定义训练的模型
(1)训练参数的定义及初始化
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
|
def init_weights(shape): return tf.Variable(tf.random_normal(shape,stddev = 0.01 )) #init weights weights = { "w1" :init_weights([ 3 , 3 , 3 , 16 ]), "w2" :init_weights([ 3 , 3 , 16 , 128 ]), "w3" :init_weights([ 3 , 3 , 128 , 256 ]), "w4" :init_weights([ 4096 , 4096 ]), "wo" :init_weights([ 4096 , 2 ]) } #init biases biases = { "b1" :init_weights([ 16 ]), "b2" :init_weights([ 128 ]), "b3" :init_weights([ 256 ]), "b4" :init_weights([ 4096 ]), "bo" :init_weights([ 2 ]) } |
CNN的每层是y=wx+b的决策模型,卷积层产生特征向量,根据这些特征向量带入x进行计算,因此,需要定义卷积层的初始化参数,包括权重和偏置。其中第8行的参数形状后边再解释。
(2)定义不同层的操作
1
2
3
4
5
6
7
8
9
10
|
def conv2d(x,w,b): x = tf.nn.conv2d(x,w,strides = [ 1 , 1 , 1 , 1 ],padding = "SAME" ) x = tf.nn.bias_add(x,b) return tf.nn.relu(x) def pooling(x): return tf.nn.max_pool(x,ksize = [ 1 , 2 , 2 , 1 ],strides = [ 1 , 2 , 2 , 1 ],padding = "SAME" ) def norm(x,lsize = 4 ): return tf.nn.lrn(x,depth_radius = lsize,bias = 1 ,alpha = 0.001 / 9.0 ,beta = 0.75 ) |
这里只定义了三种层,即卷积层、池化层和正则化层
(3)定义训练模型
1
2
3
4
5
6
7
8
9
10
11
12
13
14
|
def mmodel(images): l1 = conv2d(images,weights[ "w1" ],biases[ "b1" ]) l2 = pooling(l1) l2 = norm(l2) l3 = conv2d(l2,weights[ "w2" ],biases[ "b2" ]) l4 = pooling(l3) l4 = norm(l4) l5 = conv2d(l4,weights[ "w3" ],biases[ "b3" ]) #same as the batch size l6 = pooling(l5) l6 = tf.reshape(l6,[ - 1 ,weights[ "w4" ].get_shape().as_list()[ 0 ]]) l7 = tf.nn.relu(tf.matmul(l6,weights[ "w4" ]) + biases[ "b4" ]) soft_max = tf.add(tf.matmul(l7,weights[ "wo" ]),biases[ "bo" ]) return soft_max |
模型比较简单,使用三层卷积,第11行使用全连接,需要对特征向量进行reshape,其中l6的形状为[-1,w4的第1维的参数],因此,将其按照“w4”reshape的时候,要使得-1位置的大小为batch_size,这样,最终再乘以“wo”时,最终的输出大小为[batch_size,class_num]
(4)定义评估量
1
2
3
4
5
6
7
8
9
10
11
|
def loss(logits,label_batches): cross_entropy = tf.nn.sparse_softmax_cross_entropy_with_logits(logits = logits,labels = label_batches) cost = tf.reduce_mean(cross_entropy) return cost 首先定义损失函数,这是用于训练最小化损失的必需量 def get_accuracy(logits,labels): acc = tf.nn.in_top_k(logits,labels, 1 ) acc = tf.cast(acc,tf.float32) acc = tf.reduce_mean(acc) return acc |
评价分类准确率的量,训练时,需要loss值减小,准确率增加,这样的训练才是收敛的。
(5)定义训练方式
1
2
3
|
def training(loss,lr): train_op = tf.train.RMSPropOptimizer(lr, 0.9 ).minimize(loss) return train_op |
有很多种训练方式,可以自行去官网查看,但是不同的训练方式可能对应前面的参数定义不一样,需要另行处理,否则可能报错。
4 训练
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
|
def run_training(): data_dir = 'C:/Users/wk/Desktop/bky/dataSet/' image,label = inputData.get_files(data_dir) image_batches,label_batches = inputData.get_batches(image,label, 32 , 32 , 16 , 20 ) p = model.mmodel(image_batches) cost = model.loss(p,label_batches) train_op = model.training(cost, 0.001 ) acc = model.get_accuracy(p,label_batches) sess = tf.Session() init = tf.global_variables_initializer() sess.run(init) coord = tf.train.Coordinator() threads = tf.train.start_queue_runners(sess = sess,coord = coord) try : for step in np.arange( 1000 ): print (step) if coord.should_stop(): break _,train_acc,train_loss = sess.run([train_op,acc,cost]) print ( "loss:{} accuracy:{}" . format (train_loss,train_acc)) except tf.errors.OutOfRangeError: print ( "Done!!!" ) finally : coord.request_stop() coord.join(threads) sess.close() |
神经网络训练的时候,我们需要将模型保存下来,方便后面继续训练或者用训练好的模型进行测试。因此,我们需要创建一个saver保存模型。
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
|
def run_training(): data_dir = 'C:/Users/wk/Desktop/bky/dataSet/' log_dir = 'C:/Users/wk/Desktop/bky/log/' image,label = inputData.get_files(data_dir) image_batches,label_batches = inputData.get_batches(image,label, 32 , 32 , 16 , 20 ) print (image_batches.shape) p = model.mmodel(image_batches, 16 ) cost = model.loss(p,label_batches) train_op = model.training(cost, 0.001 ) acc = model.get_accuracy(p,label_batches) sess = tf.Session() init = tf.global_variables_initializer() sess.run(init) saver = tf.train.Saver() coord = tf.train.Coordinator() threads = tf.train.start_queue_runners(sess = sess,coord = coord) try : for step in np.arange( 1000 ): print (step) if coord.should_stop(): break _,train_acc,train_loss = sess.run([train_op,acc,cost]) print ( "loss:{} accuracy:{}" . format (train_loss,train_acc)) if step % 100 = = 0 : check = os.path.join(log_dir, "model.ckpt" ) saver.save(sess,check,global_step = step) except tf.errors.OutOfRangeError: print ( "Done!!!" ) finally : coord.request_stop() coord.join(threads) sess.close() |
训练好的模型信息会记录在checkpoint文件中,大致如下:
model_checkpoint_path: "C:/Users/wk/Desktop/bky/log/model.ckpt-100"
all_model_checkpoint_paths: "C:/Users/wk/Desktop/bky/log/model.ckpt-0"
all_model_checkpoint_paths: "C:/Users/wk/Desktop/bky/log/model.ckpt-100"
其余还会生成一些文件,分别记录了模型参数等信息,后边测试的时候程序会读取checkpoint文件去加载这些真正的数据文件
构建好神经网络进行训练完成后,如果用之前的代码直接进行测试,会报shape不符合的错误,大致是卷积层的输入与图像的shape不一致,这是因为上篇的代码,将weights和biases定义在了模型的外面,调用模型的时候,出现valueError的错误。
因此,我们需要将参数定义在模型里面,加载训练好的模型参数时,训练好的参数才能够真正初始化模型。重写模型函数如下
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
|
def mmodel(images,batch_size): with tf.variable_scope( 'conv1' ) as scope: weights = tf.get_variable( 'weights' , shape = [ 3 , 3 , 3 , 16 ], dtype = tf.float32, initializer = tf.truncated_normal_initializer(stddev = 0.1 ,dtype = tf.float32)) biases = tf.get_variable( 'biases' , shape = [ 16 ], dtype = tf.float32, initializer = tf.constant_initializer( 0.1 )) conv = tf.nn.conv2d(images, weights, strides = [ 1 , 1 , 1 , 1 ], padding = 'SAME' ) pre_activation = tf.nn.bias_add(conv, biases) conv1 = tf.nn.relu(pre_activation, name = scope.name) with tf.variable_scope( 'pooling1_lrn' ) as scope: pool1 = tf.nn.max_pool(conv1, ksize = [ 1 , 2 , 2 , 1 ],strides = [ 1 , 2 , 2 , 1 ], padding = 'SAME' , name = 'pooling1' ) norm1 = tf.nn.lrn(pool1, depth_radius = 4 , bias = 1.0 , alpha = 0.001 / 9.0 , beta = 0.75 ,name = 'norm1' ) with tf.variable_scope( 'conv2' ) as scope: weights = tf.get_variable( 'weights' , shape = [ 3 , 3 , 16 , 128 ], dtype = tf.float32, initializer = tf.truncated_normal_initializer(stddev = 0.1 ,dtype = tf.float32)) biases = tf.get_variable( 'biases' , shape = [ 128 ], dtype = tf.float32, initializer = tf.constant_initializer( 0.1 )) conv = tf.nn.conv2d(norm1, weights, strides = [ 1 , 1 , 1 , 1 ],padding = 'SAME' ) pre_activation = tf.nn.bias_add(conv, biases) conv2 = tf.nn.relu(pre_activation, name = 'conv2' ) with tf.variable_scope( 'pooling2_lrn' ) as scope: norm2 = tf.nn.lrn(conv2, depth_radius = 4 , bias = 1.0 , alpha = 0.001 / 9.0 , beta = 0.75 ,name = 'norm2' ) pool2 = tf.nn.max_pool(norm2, ksize = [ 1 , 2 , 2 , 1 ], strides = [ 1 , 1 , 1 , 1 ], padding = 'SAME' ,name = 'pooling2' ) with tf.variable_scope( 'local3' ) as scope: reshape = tf.reshape(pool2, shape = [batch_size, - 1 ]) dim = reshape.get_shape()[ 1 ].value weights = tf.get_variable( 'weights' , shape = [dim, 4096 ], dtype = tf.float32, initializer = tf.truncated_normal_initializer(stddev = 0.005 ,dtype = tf.float32)) biases = tf.get_variable( 'biases' , shape = [ 4096 ], dtype = tf.float32, initializer = tf.constant_initializer( 0.1 )) local3 = tf.nn.relu(tf.matmul(reshape, weights) + biases, name = scope.name) with tf.variable_scope( 'softmax_linear' ) as scope: weights = tf.get_variable( 'softmax_linear' , shape = [ 4096 , 2 ], dtype = tf.float32, initializer = tf.truncated_normal_initializer(stddev = 0.005 ,dtype = tf.float32)) biases = tf.get_variable( 'biases' , shape = [ 2 ], dtype = tf.float32, initializer = tf.constant_initializer( 0.1 )) softmax_linear = tf.add(tf.matmul(local3, weights), biases, name = 'softmax_linear' ) return softmax_linear |
测试训练好的模型
首先获取一张测试图像
1
2
3
4
5
6
|
def get_one_image(img_dir): image = Image. open (img_dir) plt.imshow(image) image = image.resize([ 32 , 32 ]) image_arr = np.array(image) return image_arr |
加载模型,计算测试结果
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
|
def test(test_file): log_dir = 'C:/Users/wk/Desktop/bky/log/' image_arr = get_one_image(test_file) with tf.Graph().as_default(): image = tf.cast(image_arr, tf.float32) image = tf.image.per_image_standardization(image) image = tf.reshape(image, [ 1 , 32 , 32 , 3 ]) print (image.shape) p = model.mmodel(image, 1 ) logits = tf.nn.softmax(p) x = tf.placeholder(tf.float32,shape = [ 32 , 32 , 3 ]) saver = tf.train.Saver() with tf.Session() as sess: ckpt = tf.train.get_checkpoint_state(log_dir) if ckpt and ckpt.model_checkpoint_path: global_step = ckpt.model_checkpoint_path.split( '/' )[ - 1 ].split( '-' )[ - 1 ] saver.restore(sess, ckpt.model_checkpoint_path) print ('Loading success) else : print ( 'No checkpoint' ) prediction = sess.run(logits, feed_dict = {x: image_arr}) max_index = np.argmax(prediction) print (max_index) |
前面主要是将测试图片标准化为网络的输入图像,15-19是加载模型文件,然后将图像输入到模型里即可
以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持服务器之家。
原文链接:http://www.cnblogs.com/wktwj/p/7227544.html