前两天,班上同学写论文,需要将很多篇论文题目按照中文的习惯分词并统计每个词出现的频率。
让我帮她实现这个功能,我在网上查了之后发现jieba这个库还挺不错的。
运行环境:
- 安装python2.7.13:https://www.python.org/downloads/release/python-2713/
- 安装jieba:pip install jieba
- 安装xlwt:pip install xlwt
具体代码如下:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
|
#!/usr/bin/python # -*- coding:utf-8 -*- import sys reload (sys) sys.setdefaultencoding( 'utf-8' ) import jieba import jieba.analyse import xlwt #写入Excel表的库 if __name__ = = "__main__" : wbk = xlwt.Workbook(encoding = 'ascii' ) sheet = wbk.add_sheet( "wordCount" ) #Excel单元格名字 word_lst = [] key_list = [] for line in open ( '1.txt' ): #1.txt是需要分词统计的文档 item = line.strip( '\n\r' ).split( '\t' ) #制表格切分 # print item tags = jieba.analyse.extract_tags(item[ 0 ]) #jieba分词 for t in tags: word_lst.append(t) word_dict = {} with open ( "wordCount.txt" , 'w' ) as wf2: #打开文件 for item in word_lst: if item not in word_dict: #统计数量 word_dict[item] = 1 else : word_dict[item] + = 1 orderList = list (word_dict.values()) orderList.sort(reverse = True ) # print orderList for i in range ( len (orderList)): for key in word_dict: if word_dict[key] = = orderList[i]: wf2.write(key + ' ' + str (word_dict[key]) + '\n' ) #写入txt文档 key_list.append(key) word_dict[key] = 0 for i in range ( len (key_list)): sheet.write(i, 1 , label = orderList[i]) sheet.write(i, 0 , label = key_list[i]) wbk.save( 'wordCount.xls' ) #保存为 wordCount.xls文件 |
1.txt是你需要分词统计的文本内容,最后会生成wordCount.txt和wordCount.xls两个文件。下图是最后结果
以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持服务器之家。
原文链接:http://blog.csdn.net/u014070086/article/details/73201590