本文实例为大家分享了python表格存取的具体代码,供大家参考,具体内容如下
xlwt/xlrd库 存Excel文件:(如果存储数据中有字符,那么写法还有点小小的变化)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
|
import xlwt workbook = xlwt.Workbook(encoding = 'utf-8' ) booksheet = workbook.add_sheet( 'Sheet 1' , cell_overwrite_ok = True ) #存第一行cell(1,1)和cell(1,2) booksheet.write( 0 , 0 , 34 ) booksheet.write( 0 , 1 , 38 ) #存第二行cell(2,1)和cell(2,2) booksheet.write( 1 , 0 , 36 ) booksheet.write( 1 , 1 , 39 ) #存一行数据 rowdata = [ 43 , 56 ] for i in range ( len (rowdata)): booksheet.write( 2 ,i,rowdata[i]) workbook.save( 'test_xlwt.xls' ) |
读Excel文件:(同样是对于数值类型数据)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
|
import xlrd workbook = xlrd.open_workbook( 'D:\\Py_exercise\\test_xlwt.xls' ) print (workbook.sheet_names()) #查看所有sheet booksheet = workbook.sheet_by_index( 0 ) #用索引取第一个sheet booksheet = workbook.sheet_by_name( 'Sheet 1' ) #或用名称取sheet #读单元格数据 cell_11 = booksheet.cell_value( 0 , 0 ) cell_21 = booksheet.cell_value( 1 , 0 ) #读一行数据 row_3 = booksheet.row_values( 2 ) print (cell_11, cell_21, row_3) >>> 34.0 36.0 [ 43.0 , 56.0 ] |
openpyxl 库 存Excel文件:
1
2
3
4
5
6
7
8
9
10
|
from openpyxl import Workbook workbook = Workbook() booksheet = workbook.active #获取当前活跃的sheet,默认是第一个sheet #存第一行单元格cell(1,1) booksheet.cell( 1 , 1 ).value = 6 #这个方法索引从1开始 booksheet.cell( "B1" ).value = 7 #存一行数据 booksheet.append([ 11 , 87 ]) workbook.save( "test_openpyxl.xlsx" ) |
读Excel文件:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
|
from openpyxl import load_workbook workbook = load_workbook( 'D:\\Py_exercise\\test_openpyxl.xlsx' ) #booksheet = workbook.active #获取当前活跃的sheet,默认是第一个sheet sheets = workbook.get_sheet_names() #从名称获取sheet booksheet = workbook.get_sheet_by_name(sheets[ 0 ]) rows = booksheet.rows columns = booksheet.columns #迭代所有的行 for row in rows: line = [col.value for col in row] #通过坐标读取值 cell_11 = booksheet.cell( 'A1' ).value cell_11 = booksheet.cell(row = 1 , column = 1 ).value |
原理上其实都一样,就写法上有些差别。
其实如果对存储格式没有要求的话,我觉得存成 csv文件 也挺好的:
1
2
3
4
5
6
7
|
import pandas as pd csv_mat = np.empty(( 0 , 2 ), float ) csv_mat = np.append(csv_mat, [[ 43 , 55 ]], axis = 0 ) csv_mat = np.append(csv_mat, [[ 65 , 67 ]], axis = 0 ) csv_pd = pd.DataFrame(csv_mat) csv_pd.to_csv( "test_pd.csv" , sep = ',' , header = False , index = False ) |
因为它读起来非常简单:
1
2
3
4
5
|
import pandas as pd filename = "D:\\Py_exercise\\test_pd.csv" csv_data = pd.read_csv(filename, header = None ) csv_data = np.array(csv_data, dtype = float ) |
以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持服务器之家。
原文链接:http://www.cnblogs.com/ouyangping/p/8514364.html