本文为大家分享了TensorFLow用Saver保存和恢复变量的具体代码,供大家参考,具体内容如下
建立文件tensor_save.py, 保存变量v1,v2的tensor到checkpoint files中,名称分别设置为v3,v4。
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
|
import tensorflow as tf # Create some variables. v1 = tf.Variable( 3 , name = "v1" ) v2 = tf.Variable( 4 , name = "v2" ) # Create model y = tf.add(v1,v2) # Add an op to initialize the variables. init_op = tf.initialize_all_variables() # Add ops to save and restore all the variables. saver = tf.train.Saver({ 'v3' :v1, 'v4' :v2}) # Later, launch the model, initialize the variables, do some work, save the # variables to disk. with tf.Session() as sess: sess.run(init_op) print ( "v1 = " , v1. eval ()) print ( "v2 = " , v2. eval ()) # Save the variables to disk. save_path = saver.save(sess, "f:/tmp/model.ckpt" ) print ( "Model saved in file: " , save_path) |
建立文件tensor_restror.py, 将checkpoint files中名称分别为v3,v4的tensor分别恢复到变量v3,v4中。
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
|
import tensorflow as tf # Create some variables. v3 = tf.Variable( 0 , name = "v3" ) v4 = tf.Variable( 0 , name = "v4" ) # Create model y = tf.mul(v3,v4) # Add ops to save and restore all the variables. saver = tf.train.Saver() # Later, launch the model, use the saver to restore variables from disk, and # do some work with the model. with tf.Session() as sess: # Restore variables from disk. saver.restore(sess, "f:/tmp/model.ckpt" ) print ( "Model restored." ) print ( "v3 = " , v3. eval ()) print ( "v4 = " , v4. eval ()) print ( "y = " ,sess.run(y)) |
以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持服务器之家。
原文链接:http://blog.csdn.net/muyiyushan/article/details/68486497