上一篇文章我们介绍了Apache Commons Math3学习之数值积分实例代码,这里给大家分享math3多项式曲线拟合的相关内容,具体如下。
多项式曲线拟合:org.apache.commons.math3.fitting.PolynomialCurveFitter类。
用法示例代码:
1
2
3
4
5
6
7
8
9
|
// ... 创建并初始化输入数据: double[] x = new double[...]; double[] y = new double[...]; 将原始的x-y数据序列合成带权重的观察点数据序列: WeightedObservedPoints points = new WeightedObservedPoints(); // 将x-y数据元素调用points.add(x[i], y[i])加入到观察点序列中 // ... PolynomialCurveFitter fitter = PolynomialCurveFitter.create(degree); // degree 指定多项式阶数 double[] result = fitter.fit(points.toList()); // 曲线拟合,结果保存于双精度数组中,由常数项至最高次幂系数排列 |
首先要准备好待拟合的曲线数据x和y,这是两个double数组,然后把这两个数组合并到WeightedObservedPoints对象实例中,可以调用WeightedObservedPoints.add(x[i], y[i])将x和y序列中的数据逐个添加到观察点序列对象中。随后创建PolynomialCurveFitter对象,创建时要指定拟合多项式的阶数,注意阶数要选择适当,不是越高越好,否则拟合误差会很大。最后调用PolynomialCurveFitter的fit方法即可完成多项式曲线拟合,fit方法的参数通过WeightedObservedPoints.toList()获得。拟合结果通过一个double数组返回,按元素顺序依次是常数项、一次项、二次项、……。
完整的演示代码如下:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
|
interface TestCase { public Object run(List<Object> params) throws Exception; public List<Object> getParams(); public void printResult(Object result); } class CalcCurveFitting implements TestCase { public CalcCurveFitting() { System.out.print( "本算例用于计算多项式曲线拟合。正在初始化 计算数据(" + arrayLength + "点, " + degree + "阶)... ..." ); inputDataX = new double [arrayLength]; // inputDataX = new double[] {1, 2, 3, 4, 5, 6, 7}; inputDataY = new double [inputDataX.length]; double [] factor = new double [degree + 1 ]; // N阶多项式会有N+1个系数,其中之一为常数项 for ( int index = 0 ; index < factor.length; index ++) { factor[index] = index + 1 ; } for ( int index = 0 ; index < inputDataY.length; index ++) { inputDataX[index] = index * 0.00001 ; inputDataY[index] = calcPoly(inputDataX[index], factor); // y = sum(x[n) * fact[n]) // System.out.print(inputDataY[index] + ", "); } points = new WeightedObservedPoints(); for ( int index = 0 ; index < inputDataX.length; index ++) { points.add(inputDataX[index], inputDataY[index]); } System.out.println( "初始化完成" ); } @Override public List<Object> getParams() { List<Object> params = new ArrayList<Object>(); params.add(points); return params; } @Override public Object run(List<Object> params) throws Exception { PolynomialCurveFitter fitter = PolynomialCurveFitter.create(degree); WeightedObservedPoints points = (WeightedObservedPoints)params.get( 0 ); double [] result = fitter.fit(points.toList()); return result; } @Override public void printResult(Object result) { for ( double data : ( double [])result) { System.out.println(data); } } private double calcPoly( double x, double [] factor) { double y = 0 ; for ( int deg = 0 ; deg < factor.length; deg ++) { y += Math.pow(x, deg) * factor[deg]; } return y; } private double [] inputDataX = null ; private double [] inputDataY = null ; private WeightedObservedPoints points = null ; private final int arrayLength = 200000 ; private final int degree = 5 ; // 阶数 } public class TimeCostCalculator { public TimeCostCalculator() { } /** * 计算指定对象的运行时间开销。 * * @param testCase 指定被测对象。 * @return 返回sub.run的时间开销,单位为s。 * @throws Exception */ public double calcTimeCost(TestCase testCase) throws Exception { List<Object> params = testCase.getParams(); long startTime = System.nanoTime(); Object result = testCase.run(params); long stopTime = System.nanoTime(); testCase.printResult(result); System.out.println( "start: " + startTime + " / stop: " + stopTime); double timeCost = (stopTime - startTime) * 1 .0e- 9 ; return timeCost; } public static void main(String[] args) throws Exception { TimeCostCalculator tcc = new TimeCostCalculator(); double timeCost; System.out.println( "--------------------------------------------------------------------------" ); timeCost = tcc.calcTimeCost( new CalcCurveFitting()); System.out.println( "time cost is: " + timeCost + "s" ); System.out.println( "--------------------------------------------------------------------------" ); } } |
总结
以上就是本文关于Apache Commons Math3探索之多项式曲线拟合实现代码的全部内容,希望对大家有所帮助。
原文链接:http://blog.csdn.net/kingfox/article/details/44118319