使用astype实现dataframe字段类型转换
1
2
3
4
5
6
7
8
9
10
|
# -*- coding: UTF-8 -*- import pandas as pd df = pd.DataFrame([{'col1':'a', 'col2':'1'}, {'col1':'b', 'col2':'2'}]) print df.dtypes df['col2'] = df['col2'].astype('int') print '-----------' print df.dtypes df['col2'] = df['col2'].astype('float64') print '-----------' print df.dtypes |
输出结果:
1
2
3
4
5
6
7
8
9
10
11
|
col1 object col2 object dtype: object ----------- col1 object col2 int32 dtype: object ----------- col1 object col2 float64 dtype: object |
注:data type list
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
|
Data type Description bool_ Boolean (True or False) stored as a byte int_ Default integer type (same as C long; normally either int64 or int32) intc Identical to C int (normally int32 or int64) intp Integer used for indexing (same as C ssize_t; normally either int32 or int64) int8 Byte (-128 to 127) int16 Integer (-32768 to 32767) int32 Integer (-2147483648 to 2147483647) int64 Integer (-9223372036854775808 to 9223372036854775807) uint8 Unsigned integer (0 to 255) uint16 Unsigned integer (0 to 65535) uint32 Unsigned integer (0 to 4294967295) uint64 Unsigned integer (0 to 18446744073709551615) float_ Shorthand for float64. float16 Half precision float: sign bit, 5 bits exponent, 10 bits mantissa float32 Single precision float: sign bit, 8 bits exponent, 23 bits mantissa float64 Double precision float: sign bit, 11 bits exponent, 52 bits mantissa complex_ Shorthand for complex128. complex64 Complex number, represented by two 32-bit floats (real and imaginary components) complex128 Complex number, represented by two 64-bit floats (real and imaginary components) |
以上这篇python dataframe astype 字段类型转换方法就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持服务器之家。
原文链接:https://blog.csdn.net/chinacmt/article/details/52230339