本文实例为大家分享了python实现神经网络算法及应用的具体代码,供大家参考,具体内容如下
首先用python实现简单地神经网络算法:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
|
import numpy as np # 定义tanh函数 def tanh(x): return np.tanh(x) # tanh函数的导数 def tan_deriv(x): return 1.0 - np.tanh(x) * np.tan(x) # sigmoid函数 def logistic(x): return 1 / ( 1 + np.exp( - x)) # sigmoid函数的导数 def logistic_derivative(x): return logistic(x) * ( 1 - logistic(x)) class neuralnetwork: def __init__( self , layers, activation = 'tanh' ): """ 神经网络算法构造函数 :param layers: 神经元层数 :param activation: 使用的函数(默认tanh函数) :return:none """ if activation = = 'logistic' : self .activation = logistic self .activation_deriv = logistic_derivative elif activation = = 'tanh' : self .activation = tanh self .activation_deriv = tan_deriv # 权重列表 self .weights = [] # 初始化权重(随机) for i in range ( 1 , len (layers) - 1 ): self .weights.append(( 2 * np.random.random((layers[i - 1 ] + 1 , layers[i] + 1 )) - 1 ) * 0.25 ) self .weights.append(( 2 * np.random.random((layers[i] + 1 , layers[i + 1 ])) - 1 ) * 0.25 ) def fit( self , x, y, learning_rate = 0.2 , epochs = 10000 ): """ 训练神经网络 :param x: 数据集(通常是二维) :param y: 分类标记 :param learning_rate: 学习率(默认0.2) :param epochs: 训练次数(最大循环次数,默认10000) :return: none """ # 确保数据集是二维的 x = np.atleast_2d(x) temp = np.ones([x.shape[ 0 ], x.shape[ 1 ] + 1 ]) temp[:, 0 : - 1 ] = x x = temp y = np.array(y) for k in range (epochs): # 随机抽取x的一行 i = np.random.randint(x.shape[ 0 ]) # 用随机抽取的这一组数据对神经网络更新 a = [x[i]] # 正向更新 for l in range ( len ( self .weights)): a.append( self .activation(np.dot(a[l], self .weights[l]))) error = y[i] - a[ - 1 ] deltas = [error * self .activation_deriv(a[ - 1 ])] # 反向更新 for l in range ( len (a) - 2 , 0 , - 1 ): deltas.append(deltas[ - 1 ].dot( self .weights[l].t) * self .activation_deriv(a[l])) deltas.reverse() for i in range ( len ( self .weights)): layer = np.atleast_2d(a[i]) delta = np.atleast_2d(deltas[i]) self .weights[i] + = learning_rate * layer.t.dot(delta) def predict( self , x): x = np.array(x) temp = np.ones(x.shape[ 0 ] + 1 ) temp[ 0 : - 1 ] = x a = temp for l in range ( 0 , len ( self .weights)): a = self .activation(np.dot(a, self .weights[l])) return a |
使用自己定义的神经网络算法实现一些简单的功能:
小案例:
x: y
0 0 0
0 1 1
1 0 1
1 1 0
1
2
3
4
5
6
7
8
9
10
|
from nn.neuralnetwork import neuralnetwork import numpy as np nn = neuralnetwork([ 2 , 2 , 1 ], 'tanh' ) temp = [[ 0 , 0 ], [ 0 , 1 ], [ 1 , 0 ], [ 1 , 1 ]] x = np.array(temp) y = np.array([ 0 , 1 , 1 , 0 ]) nn.fit(x, y) for i in temp: print (i, nn.predict(i)) |
发现结果基本机制,无限接近0或者无限接近1
第二个例子:识别图片中的数字
导入数据:
1
2
3
4
5
6
7
8
|
from sklearn.datasets import load_digits import pylab as pl digits = load_digits() print (digits.data.shape) pl.gray() pl.matshow(digits.images[ 0 ]) pl.show() |
观察下:大小:(1797, 64)
数字0
接下来的代码是识别它们:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
|
import numpy as np from sklearn.datasets import load_digits from sklearn.metrics import confusion_matrix, classification_report from sklearn.preprocessing import labelbinarizer from nn.neuralnetwork import neuralnetwork from sklearn.cross_validation import train_test_split # 加载数据集 digits = load_digits() x = digits.data y = digits.target # 处理数据,使得数据处于0,1之间,满足神经网络算法的要求 x - = x. min () x / = x. max () # 层数: # 输出层10个数字 # 输入层64因为图片是8*8的,64像素 # 隐藏层假设100 nn = neuralnetwork([ 64 , 100 , 10 ], 'logistic' ) # 分隔训练集和测试集 x_train, x_test, y_train, y_test = train_test_split(x, y) # 转化成sklearn需要的二维数据类型 labels_train = labelbinarizer().fit_transform(y_train) labels_test = labelbinarizer().fit_transform(y_test) print ( "start fitting" ) # 训练3000次 nn.fit(x_train, labels_train, epochs = 3000 ) predictions = [] for i in range (x_test.shape[ 0 ]): o = nn.predict(x_test[i]) # np.argmax:第几个数对应最大概率值 predictions.append(np.argmax(o)) # 打印预测相关信息 print (confusion_matrix(y_test, predictions)) print (classification_report(y_test, predictions)) |
结果:
矩阵对角线代表预测正确的数量,发现正确率很多
这张表更直观地显示出预测正确率:
共450个案例,成功率94%
以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持服务器之家。
原文链接:http://www.cnblogs.com/xuyiqing/p/8797048.html