本文实例讲述了Python实现的朴素贝叶斯算法。分享给大家供大家参考,具体如下:
代码主要参考机器学习实战那本书,发现最近老外的书确实比中国人写的好,由浅入深,代码通俗易懂,不多说上代码:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
|
#encoding:utf-8 ''''' Created on 2015年9月6日 @author: ZHOUMEIXU204 朴素贝叶斯实现过程 ''' #在该算法中类标签为1和0,如果是多标签稍微改动代码既可 import numpy as np path = u "D:\\Users\\zhoumeixu204\Desktop\\python语言机器学习\\机器学习实战代码 python\\机器学习实战代码\\machinelearninginaction\\Ch04\\" def loadDataSet(): postingList = [[ 'my' , 'dog' , 'has' , 'flea' , 'problems' , 'help' , 'please' ],\ [ 'maybe' , 'not' , 'take' , 'him' , 'to' , 'dog' , 'park' , 'stupid' ],\ [ 'my' , 'dalmation' , 'is' , 'so' , 'cute' , 'I' , 'love' , 'him' ],\ [ 'stop' , 'posting' , 'stupid' , 'worthless' , 'garbage' ],\ [ 'mr' , 'licks' , 'ate' , 'my' , 'steak' , 'how' , 'to' , 'stop' , 'him' ],\ [ 'quit' , 'buying' , 'worthless' , 'dog' , 'food' , 'stupid' ]] classVec = [ 0 , 1 , 0 , 1 , 0 , 1 ] #1 is abusive, 0 not return postingList,classVec def createVocabList(dataset): vocabSet = set ([]) for document in dataset: vocabSet = vocabSet| set (document) return list (vocabSet) def setOfWordseVec(vocabList,inputSet): returnVec = [ 0 ] * len (vocabList) for word in inputSet: if word in vocabList: returnVec[vocabList.index(word)] = 1 #vocabList.index() 函数获取vocabList列表某个元素的位置,这段代码得到一个只包含0和1的列表 else : print ( "the word :%s is not in my Vocabulary!" % word) return returnVec listOPosts,listClasses = loadDataSet() myVocabList = createVocabList(listOPosts) print ( len (myVocabList)) print (myVocabList) print (setOfWordseVec(myVocabList, listOPosts[ 0 ])) print (setOfWordseVec(myVocabList, listOPosts[ 3 ])) #上述代码是将文本转化为向量的形式,如果出现则在向量中为1,若不出现 ,则为0 def trainNB0(trainMatrix,trainCategory): #创建朴素贝叶斯分类器函数 numTrainDocs = len (trainMatrix) numWords = len (trainMatrix[ 0 ]) pAbusive = sum (trainCategory) / float (numTrainDocs) p0Num = np.ones(numWords);p1Num = np.ones(numWords) p0Deom = 2.0 ;p1Deom = 2.0 for i in range (numTrainDocs): if trainCategory[i] = = 1 : p1Num + = trainMatrix[i] p1Deom + = sum (trainMatrix[i]) else : p0Num + = trainMatrix[i] p0Deom + = sum (trainMatrix[i]) p1vect = np.log(p1Num / p1Deom) #change to log p0vect = np.log(p0Num / p0Deom) #change to log return p0vect,p1vect,pAbusive listOPosts,listClasses = loadDataSet() myVocabList = createVocabList(listOPosts) trainMat = [] for postinDoc in listOPosts: trainMat.append(setOfWordseVec(myVocabList, postinDoc)) p0V,p1V,pAb = trainNB0(trainMat, listClasses) if __name__! = '__main__' : print ( "p0的概况" ) print (p0V) print ( "p1的概率" ) print (p1V) print ( "pAb的概率" ) print (pAb) |
运行结果:
32
['him', 'garbage', 'problems', 'take', 'steak', 'quit', 'so', 'is', 'cute', 'posting', 'dog', 'to', 'love', 'licks', 'dalmation', 'flea', 'I', 'please', 'maybe', 'buying', 'my', 'stupid', 'park', 'food', 'stop', 'has', 'ate', 'help', 'how', 'mr', 'worthless', 'not']
[0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0]
[0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0]
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
|
# -*- coding:utf-8 -*- #!python2 #构建样本分类器testEntry=['love','my','dalmation'] testEntry=['stupid','garbage']到底属于哪个类别 import numpy as np def loadDataSet(): postingList = [[ 'my' , 'dog' , 'has' , 'flea' , 'problems' , 'help' , 'please' ],\ [ 'maybe' , 'not' , 'take' , 'him' , 'to' , 'dog' , 'park' , 'stupid' ],\ [ 'my' , 'dalmation' , 'is' , 'so' , 'cute' , 'I' , 'love' , 'him' ],\ [ 'stop' , 'posting' , 'stupid' , 'worthless' , 'garbage' ],\ [ 'mr' , 'licks' , 'ate' , 'my' , 'steak' , 'how' , 'to' , 'stop' , 'him' ],\ [ 'quit' , 'buying' , 'worthless' , 'dog' , 'food' , 'stupid' ]] classVec = [ 0 , 1 , 0 , 1 , 0 , 1 ] #1 is abusive, 0 not return postingList,classVec def createVocabList(dataset): vocabSet = set ([]) for document in dataset: vocabSet = vocabSet| set (document) return list (vocabSet) def setOfWordseVec(vocabList,inputSet): returnVec = [ 0 ] * len (vocabList) for word in inputSet: if word in vocabList: returnVec[vocabList.index(word)] = 1 #vocabList.index() 函数获取vocabList列表某个元素的位置,这段代码得到一个只包含0和1的列表 else : print ( "the word :%s is not in my Vocabulary!" % word) return returnVec def trainNB0(trainMatrix,trainCategory): #创建朴素贝叶斯分类器函数 numTrainDocs = len (trainMatrix) numWords = len (trainMatrix[ 0 ]) pAbusive = sum (trainCategory) / float (numTrainDocs) p0Num = np.ones(numWords);p1Num = np.ones(numWords) p0Deom = 2.0 ;p1Deom = 2.0 for i in range (numTrainDocs): if trainCategory[i] = = 1 : p1Num + = trainMatrix[i] p1Deom + = sum (trainMatrix[i]) else : p0Num + = trainMatrix[i] p0Deom + = sum (trainMatrix[i]) p1vect = np.log(p1Num / p1Deom) #change to log p0vect = np.log(p0Num / p0Deom) #change to log return p0vect,p1vect,pAbusive def classifyNB(vec2Classify,p0Vec,p1Vec,pClass1): p1 = sum (vec2Classify * p1Vec) + np.log(pClass1) p0 = sum (vec2Classify * p0Vec) + np.log( 1.0 - pClass1) if p1>p0: return 1 else : return 0 def testingNB(): listOPosts,listClasses = loadDataSet() myVocabList = createVocabList(listOPosts) trainMat = [] for postinDoc in listOPosts: trainMat.append(setOfWordseVec(myVocabList, postinDoc)) p0V,p1V,pAb = trainNB0(np.array(trainMat),np.array(listClasses)) print ( "p0V={0}" . format (p0V)) print ( "p1V={0}" . format (p1V)) print ( "pAb={0}" . format (pAb)) testEntry = [ 'love' , 'my' , 'dalmation' ] thisDoc = np.array(setOfWordseVec(myVocabList, testEntry)) print (thisDoc) print ( "vec2Classify*p0Vec={0}" . format (thisDoc * p0V)) print (testEntry, 'classified as :' ,classifyNB(thisDoc, p0V, p1V, pAb)) testEntry = [ 'stupid' , 'garbage' ] thisDoc = np.array(setOfWordseVec(myVocabList, testEntry)) print (thisDoc) print (testEntry, 'classified as :' ,classifyNB(thisDoc, p0V, p1V, pAb)) if __name__ = = '__main__' : testingNB() |
运行结果:
p0V=[-3.25809654 -2.56494936 -3.25809654 -3.25809654 -2.56494936 -2.56494936
-3.25809654 -2.56494936 -2.56494936 -3.25809654 -2.56494936 -2.56494936
-2.56494936 -2.56494936 -1.87180218 -2.56494936 -2.56494936 -2.56494936
-2.56494936 -2.56494936 -2.56494936 -3.25809654 -3.25809654 -2.56494936
-2.56494936 -3.25809654 -2.15948425 -2.56494936 -3.25809654 -2.56494936
-3.25809654 -3.25809654]
p1V=[-2.35137526 -3.04452244 -1.94591015 -2.35137526 -1.94591015 -3.04452244
-2.35137526 -3.04452244 -3.04452244 -1.65822808 -3.04452244 -3.04452244
-2.35137526 -3.04452244 -3.04452244 -3.04452244 -3.04452244 -3.04452244
-3.04452244 -3.04452244 -3.04452244 -2.35137526 -2.35137526 -3.04452244
-3.04452244 -2.35137526 -2.35137526 -3.04452244 -2.35137526 -2.35137526
-2.35137526 -2.35137526]
pAb=0.5
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0]
vec2Classify*p0Vec=[-0. -0. -0. -0. -0. -0. -0.
-0. -0. -0. -0. -0. -0. -0.
-1.87180218 -0. -0. -2.56494936 -0. -0. -0.
-0. -0. -0. -0. -0. -0.
-2.56494936 -0. -0. -0. -0. ]
['love', 'my', 'dalmation'] classified as : 0
[0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1]
['stupid', 'garbage'] classified as : 1
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
|
# -*- coding:utf-8 -*- #! python2 #使用朴素贝叶斯过滤垃圾邮件 # 1.收集数据:提供文本文件 # 2.准备数据:讲文本文件见习成词条向量 # 3.分析数据:检查词条确保解析的正确性 # 4.训练算法:使用我们之前简历的trainNB0()函数 # 5.测试算法:使用classifyNB(),并且对建一个新的测试函数来计算文档集的错误率 # 6.使用算法,构建一个完整的程序对一组文档进行分类,将错分的文档输出到屏幕上 # import re # mySent='this book is the best book on python or M.L. I hvae ever laid eyes upon.' # print(mySent.split()) # regEx=re.compile('\\W*') # print(regEx.split(mySent)) # emailText=open(path+"email\\ham\\6.txt").read() import numpy as np path = u "C:\\py\\jb51PyDemo\\src\\Demo\\Ch04\\" def loadDataSet(): postingList = [[ 'my' , 'dog' , 'has' , 'flea' , 'problems' , 'help' , 'please' ],\ [ 'maybe' , 'not' , 'take' , 'him' , 'to' , 'dog' , 'park' , 'stupid' ],\ [ 'my' , 'dalmation' , 'is' , 'so' , 'cute' , 'I' , 'love' , 'him' ],\ [ 'stop' , 'posting' , 'stupid' , 'worthless' , 'garbage' ],\ [ 'mr' , 'licks' , 'ate' , 'my' , 'steak' , 'how' , 'to' , 'stop' , 'him' ],\ [ 'quit' , 'buying' , 'worthless' , 'dog' , 'food' , 'stupid' ]] classVec = [ 0 , 1 , 0 , 1 , 0 , 1 ] #1 is abusive, 0 not return postingList,classVec def createVocabList(dataset): vocabSet = set ([]) for document in dataset: vocabSet = vocabSet| set (document) return list (vocabSet) def setOfWordseVec(vocabList,inputSet): returnVec = [ 0 ] * len (vocabList) for word in inputSet: if word in vocabList: returnVec[vocabList.index(word)] = 1 #vocabList.index() 函数获取vocabList列表某个元素的位置,这段代码得到一个只包含0和1的列表 else : print ( "the word :%s is not in my Vocabulary!" % word) return returnVec def trainNB0(trainMatrix,trainCategory): #创建朴素贝叶斯分类器函数 numTrainDocs = len (trainMatrix) numWords = len (trainMatrix[ 0 ]) pAbusive = sum (trainCategory) / float (numTrainDocs) p0Num = np.ones(numWords);p1Num = np.ones(numWords) p0Deom = 2.0 ;p1Deom = 2.0 for i in range (numTrainDocs): if trainCategory[i] = = 1 : p1Num + = trainMatrix[i] p1Deom + = sum (trainMatrix[i]) else : p0Num + = trainMatrix[i] p0Deom + = sum (trainMatrix[i]) p1vect = np.log(p1Num / p1Deom) #change to log p0vect = np.log(p0Num / p0Deom) #change to log return p0vect,p1vect,pAbusive def classifyNB(vec2Classify,p0Vec,p1Vec,pClass1): p1 = sum (vec2Classify * p1Vec) + np.log(pClass1) p0 = sum (vec2Classify * p0Vec) + np.log( 1.0 - pClass1) if p1>p0: return 1 else : return 0 def textParse(bigString): import re listOfTokens = re.split(r '\W*' ,bigString) return [tok.lower() for tok in listOfTokens if len (tok)> 2 ] def spamTest(): docList = [];classList = [];fullText = [] for i in range ( 1 , 26 ): wordList = textParse( open (path + "email\\spam\\%d.txt" % i).read()) docList.append(wordList) fullText.extend(wordList) classList.append( 1 ) wordList = textParse( open (path + "email\\ham\\%d.txt" % i).read()) docList.append(wordList) fullText.extend(wordList) classList.append( 0 ) vocabList = createVocabList(docList) trainingSet = range ( 50 );testSet = [] for i in range ( 10 ): randIndex = int (np.random.uniform( 0 , len (trainingSet))) testSet.append(trainingSet[randIndex]) del (trainingSet[randIndex]) trainMat = [];trainClasses = [] for docIndex in trainingSet: trainMat.append(setOfWordseVec(vocabList, docList[docIndex])) trainClasses.append(classList[docIndex]) p0V,p1V,pSpam = trainNB0(np.array(trainMat),np.array(trainClasses)) errorCount = 0 for docIndex in testSet: wordVector = setOfWordseVec(vocabList, docList[docIndex]) if classifyNB(np.array(wordVector), p0V, p1V, pSpam)! = classList[docIndex]: errorCount + = 1 print 'the error rate is :' , float (errorCount) / len (testSet) if __name__ = = '__main__' : spamTest() |
运行结果:
the error rate is : 0.0
其中,path路径所使用到的Ch04文件点击此处本站下载。
希望本文所述对大家Python程序设计有所帮助。
原文链接:https://blog.csdn.net/luoyexuge/article/details/49104837