本文实例讲述了Python基于sklearn库的分类算法简单应用。分享给大家供大家参考,具体如下:
scikit-learn
已经包含在Anaconda中。也可以在官方下载源码包进行安装。本文代码里封装了如下机器学习算法,我们修改数据加载函数,即可一键测试:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
|
# coding=gbk ''' Created on 2016年6月4日 @author: bryan ''' import time from sklearn import metrics import pickle as pickle import pandas as pd # Multinomial Naive Bayes Classifier def naive_bayes_classifier(train_x, train_y): from sklearn.naive_bayes import MultinomialNB model = MultinomialNB(alpha = 0.01 ) model.fit(train_x, train_y) return model # KNN Classifier def knn_classifier(train_x, train_y): from sklearn.neighbors import KNeighborsClassifier model = KNeighborsClassifier() model.fit(train_x, train_y) return model # Logistic Regression Classifier def logistic_regression_classifier(train_x, train_y): from sklearn.linear_model import LogisticRegression model = LogisticRegression(penalty = 'l2' ) model.fit(train_x, train_y) return model # Random Forest Classifier def random_forest_classifier(train_x, train_y): from sklearn.ensemble import RandomForestClassifier model = RandomForestClassifier(n_estimators = 8 ) model.fit(train_x, train_y) return model # Decision Tree Classifier def decision_tree_classifier(train_x, train_y): from sklearn import tree model = tree.DecisionTreeClassifier() model.fit(train_x, train_y) return model # GBDT(Gradient Boosting Decision Tree) Classifier def gradient_boosting_classifier(train_x, train_y): from sklearn.ensemble import GradientBoostingClassifier model = GradientBoostingClassifier(n_estimators = 200 ) model.fit(train_x, train_y) return model # SVM Classifier def svm_classifier(train_x, train_y): from sklearn.svm import SVC model = SVC(kernel = 'rbf' , probability = True ) model.fit(train_x, train_y) return model # SVM Classifier using cross validation def svm_cross_validation(train_x, train_y): from sklearn.grid_search import GridSearchCV from sklearn.svm import SVC model = SVC(kernel = 'rbf' , probability = True ) param_grid = { 'C' : [ 1e - 3 , 1e - 2 , 1e - 1 , 1 , 10 , 100 , 1000 ], 'gamma' : [ 0.001 , 0.0001 ]} grid_search = GridSearchCV(model, param_grid, n_jobs = 1 , verbose = 1 ) grid_search.fit(train_x, train_y) best_parameters = grid_search.best_estimator_.get_params() for para, val in list (best_parameters.items()): print (para, val) model = SVC(kernel = 'rbf' , C = best_parameters[ 'C' ], gamma = best_parameters[ 'gamma' ], probability = True ) model.fit(train_x, train_y) return model def read_data(data_file): data = pd.read_csv(data_file) train = data[: int ( len (data) * 0.9 )] test = data[ int ( len (data) * 0.9 ):] train_y = train.label train_x = train.drop( 'label' , axis = 1 ) test_y = test.label test_x = test.drop( 'label' , axis = 1 ) return train_x, train_y, test_x, test_y if __name__ = = '__main__' : data_file = "H:\\Research\\data\\trainCG.csv" thresh = 0.5 model_save_file = None model_save = {} test_classifiers = [ 'NB' , 'KNN' , 'LR' , 'RF' , 'DT' , 'SVM' , 'SVMCV' , 'GBDT' ] classifiers = { 'NB' :naive_bayes_classifier, 'KNN' :knn_classifier, 'LR' :logistic_regression_classifier, 'RF' :random_forest_classifier, 'DT' :decision_tree_classifier, 'SVM' :svm_classifier, 'SVMCV' :svm_cross_validation, 'GBDT' :gradient_boosting_classifier } print ( 'reading training and testing data...' ) train_x, train_y, test_x, test_y = read_data(data_file) for classifier in test_classifiers: print ( '******************* %s ********************' % classifier) start_time = time.time() model = classifiers[classifier](train_x, train_y) print ( 'training took %fs!' % (time.time() - start_time)) predict = model.predict(test_x) if model_save_file ! = None : model_save[classifier] = model precision = metrics.precision_score(test_y, predict) recall = metrics.recall_score(test_y, predict) print ( 'precision: %.2f%%, recall: %.2f%%' % ( 100 * precision, 100 * recall)) accuracy = metrics.accuracy_score(test_y, predict) print ( 'accuracy: %.2f%%' % ( 100 * accuracy)) if model_save_file ! = None : pickle.dump(model_save, open (model_save_file, 'wb' )) |
测试结果如下:
reading training and testing data...
******************* NB ********************
training took 0.004986s!
precision: 78.08%, recall: 71.25%
accuracy: 74.17%
******************* KNN ********************
training took 0.017545s!
precision: 97.56%, recall: 100.00%
accuracy: 98.68%
******************* LR ********************
training took 0.061161s!
precision: 89.16%, recall: 92.50%
accuracy: 90.07%
******************* RF ********************
training took 0.040111s!
precision: 96.39%, recall: 100.00%
accuracy: 98.01%
******************* DT ********************
training took 0.004513s!
precision: 96.20%, recall: 95.00%
accuracy: 95.36%
******************* SVM ********************
training took 0.242145s!
precision: 97.53%, recall: 98.75%
accuracy: 98.01%
******************* SVMCV ********************
Fitting 3 folds for each of 14 candidates, totalling 42 fits
[Parallel(n_jobs=1)]: Done 42 out of 42 | elapsed: 6.8s finished
probability True
verbose False
coef0 0.0
degree 3
tol 0.001
shrinking True
cache_size 200
gamma 0.001
max_iter -1
C 1000
decision_function_shape None
random_state None
class_weight None
kernel rbf
training took 7.434668s!
precision: 98.75%, recall: 98.75%
accuracy: 98.68%
******************* GBDT ********************
training took 0.521916s!
precision: 97.56%, recall: 100.00%
accuracy: 98.68%
希望本文所述对大家Python程序设计有所帮助。
原文链接:https://blog.csdn.net/Bryan__/article/details/51288953