1.矩阵相乘
矩阵相乘应满足的条件:
(1) 矩阵A的列数必须等于矩阵B的行数,矩阵A与矩阵B才能相乘;
(2) 矩阵C的行数等于矩阵A的行数,矩阵C的列数等于矩阵B的列数;
(3) 矩阵C中第i行第j列的元素等于矩阵A的第i行元素与矩阵B的第j列元素对应乘积之和,即
如:
则:
2. 常用矩阵相乘算法
用A的第i行分别和B的第j列的各个元素相乘求和,求得C的第i行j列的元素,这种算法中,B的访问是按列进行访问的,代码如下:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
|
void arymul( int a[4][5], int b[5][3], int c[4][3]) { int i, j, k; int temp; for (i = 0; i < 4; i++){ for (j = 0; j < 3; j++){ temp = 0; for (k = 0; k < 5; k++){ temp += a[i][k] * b[k][j]; } c[i][j] = temp; printf ( "%d/t" , c[i][j]); } printf ( "%d/n" ); } } |
3. 改进的算法
矩阵A、B、C都按行(数据的存储顺序)访问,以提高存储器访问效率,对于A的第i行中,第j列的元素分别和B的第j行的元素相乘,对于B中相同的列k在上述计算过程中求和,从而得到C第i行k列的数据,代码如下:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
|
void arymul1( int a[4][5], int b[5][3], int c[4][3]) { int i, j, k; int temp[3] = {0}; for (i = 0; i < 4; i++){ for (k = 0; k < 3; k ++) temp[k] = 0; for (j = 0; j < 5; j++){ //当前行的每个元素 for (k = 0; k < 3; k++){ temp[k] += a[i][j] * b[j][k]; } } for (k = 0; k < 3; k++){ c[i][k] = temp[k]; printf ( "%d/t" , c[i][k]); } printf ( "%d/n" ); } } |
这种算法很容易转到稀疏矩阵的相乘算法。
PS:斯特拉森算法的实现
斯特拉森方法,是由v.斯特拉森在1969年提出的一个方法。
我们先讨论二阶矩阵的计算方法。
对于二阶矩阵
1
2
|
a11 a12 b11 b12 A = a21 a22 B = b21 b22 |
先计算下面7个量(1)
1
2
3
4
5
6
7
|
x1 = (a11 + a22) * (b11 + b22); x2 = (a21 + a22) * b11; x3 = a11 * (b12 - b22); x4 = a22 * (b21 - b11); x5 = (a11 + a12) * b22; x6 = (a21 - a11) * (b11 + b12); x7 = (a12 - a22) * (b21 + b22); |
再设C = AB。根据矩阵相乘的规则,C的各元素为(2)
1
2
3
4
|
c11 = a11 * b11 + a12 * b21 c12 = a11 * b12 + a12 * b22 c21 = a21 * b11 + a22 * b21 c22 = a21 * b12 + a22 * b22 |
比较(1)(2),C的各元素可以表示为(3)
1
2
3
4
|
c11 = x1 + x4 - x5 + x7 c12 = x3 + x5 c21 = x2 + x4 c22 = x1 + x3 - x2 + x6 |
根据以上的方法,我们就可以计算4阶矩阵了,先将4阶矩阵A和B划分成四块2阶矩阵,分别利用公式计算它们的乘积,再使用(1)(3)来计算出最后结果。
1
2
|
ma11 ma12 mb11 mb12 A4 = ma21 ma22 B4 = mb21 mb22 |
其中
1
2
3
4
5
|
a11 a12 a13 a14 b11 b12 b13 b14 ma11 = a21 a22 ma12 = a23 a24 mb11 = b21 b22 mb12 = b23 b24 a31 a32 a33 a34 b31 b32 b33 b34 ma21 = a41 a42 ma22 = a43 a44 mb21 = b41 b42 mb22 = b43 b44 |
实现
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
|
// 计算2X2矩阵 void Multiply2X2( float & fOut_11, float & fOut_12, float & fOut_21, float & fOut_22, float f1_11, float f1_12, float f1_21, float f1_22, float f2_11, float f2_12, float f2_21, float f2_22) { const float x1((f1_11 + f1_22) * (f2_11 + f2_22)); const float x2((f1_21 + f1_22) * f2_11); const float x3(f1_11 * (f2_12 - f2_22)); const float x4(f1_22 * (f2_21 - f2_11)); const float x5((f1_11 + f1_12) * f2_22); const float x6((f1_21 - f1_11) * (f2_11 + f2_12)); const float x7((f1_12 - f1_22) * (f2_21 + f2_22)); fOut_11 = x1 + x4 - x5 + x7; fOut_12 = x3 + x5; fOut_21 = x2 + x4; fOut_22 = x1 - x2 + x3 + x6; } // 计算4X4矩阵 void Multiply(CLAYMATRIX& mOut, const CLAYMATRIX& m1, const CLAYMATRIX& m2) { float fTmp[7][4]; // (ma11 + ma22) * (mb11 + mb22) Multiply2X2(fTmp[0][0], fTmp[0][1], fTmp[0][2], fTmp[0][3], m1._11 + m1._33, m1._12 + m1._34, m1._21 + m1._43, m1._22 + m1._44, m2._11 + m2._33, m2._12 + m2._34, m2._21 + m2._43, m2._22 + m2._44); // (ma21 + ma22) * mb11 Multiply2X2(fTmp[1][0], fTmp[1][1], fTmp[1][2], fTmp[1][3], m1._31 + m1._33, m1._32 + m1._34, m1._41 + m1._43, m1._42 + m1._44, m2._11, m2._12, m2._21, m2._22); // ma11 * (mb12 - mb22) Multiply2X2(fTmp[2][0], fTmp[2][1], fTmp[2][2], fTmp[2][3], m1._11, m1._12, m1._21, m1._22, m2._13 - m2._33, m2._14 - m2._34, m2._23 - m2._43, m2._24 - m2._44); // ma22 * (mb21 - mb11) Multiply2X2(fTmp[3][0], fTmp[3][1], fTmp[3][2], fTmp[3][3], m1._33, m1._34, m1._43, m1._44, m2._31 - m2._11, m2._32 - m2._12, m2._41 - m2._21, m2._42 - m2._22); // (ma11 + ma12) * mb22 Multiply2X2(fTmp[4][0], fTmp[4][1], fTmp[4][2], fTmp[4][3], m1._11 + m1._13, m1._12 + m1._14, m1._21 + m1._23, m1._22 + m1._24, m2._33, m2._34, m2._43, m2._44); // (ma21 - ma11) * (mb11 + mb12) Multiply2X2(fTmp[5][0], fTmp[5][1], fTmp[5][2], fTmp[5][3], m1._31 - m1._11, m1._32 - m1._12, m1._41 - m1._21, m1._42 - m1._22, m2._11 + m2._13, m2._12 + m2._14, m2._21 + m2._23, m2._22 + m2._24); // (ma12 - ma22) * (mb21 + mb22) Multiply2X2(fTmp[6][0], fTmp[6][1], fTmp[6][2], fTmp[6][3], m1._13 - m1._33, m1._14 - m1._34, m1._23 - m1._43, m1._24 - m1._44, m2._31 + m2._33, m2._32 + m2._34, m2._41 + m2._43, m2._42 + m2._44); // 第一块 mOut._11 = fTmp[0][0] + fTmp[3][0] - fTmp[4][0] + fTmp[6][0]; mOut._12 = fTmp[0][1] + fTmp[3][1] - fTmp[4][1] + fTmp[6][1]; mOut._21 = fTmp[0][2] + fTmp[3][2] - fTmp[4][2] + fTmp[6][2]; mOut._22 = fTmp[0][3] + fTmp[3][3] - fTmp[4][3] + fTmp[6][3]; // 第二块 mOut._13 = fTmp[2][0] + fTmp[4][0]; mOut._14 = fTmp[2][1] + fTmp[4][1]; mOut._23 = fTmp[2][2] + fTmp[4][2]; mOut._24 = fTmp[2][3] + fTmp[4][3]; // 第三块 mOut._31 = fTmp[1][0] + fTmp[3][0]; mOut._32 = fTmp[1][1] + fTmp[3][1]; mOut._41 = fTmp[1][2] + fTmp[3][2]; mOut._42 = fTmp[1][3] + fTmp[3][3]; // 第四块 mOut._33 = fTmp[0][0] - fTmp[1][0] + fTmp[2][0] + fTmp[5][0]; mOut._34 = fTmp[0][1] - fTmp[1][1] + fTmp[2][1] + fTmp[5][1]; mOut._43 = fTmp[0][2] - fTmp[1][2] + fTmp[2][2] + fTmp[5][2]; mOut._44 = fTmp[0][3] - fTmp[1][3] + fTmp[2][3] + fTmp[5][3]; } |
比较
在标准的定义算法中我们需要进行n * n * n次乘法运算,新算法中我们需要进行7log2n次乘法,对于最常用的4阶矩阵: 原算法 新算法
加法次数 48 72(48次加法,24次减法)
乘法次数 64 49
需要额外空间 16 * sizeof(float) 28 * sizeof(float)
新算法要比原算法多了24次减法运算,少了15次乘法。但因为浮点乘法的运算速度要远远慢于加/减法运算,所以新算法的整体速度有所提高。