测试环境:
1
2
3
4
5
6
|
postgres=# select version(); version --------------------------------------------------------------------------------------------------------- PostgreSQL 11.9 on x86_64-pc-linux-gnu, compiled by gcc (GCC) 4.8.5 20150623 (Red Hat 4.8.5-39), 64- bit (1 row) postgres=# |
数据准备:
1
|
$ pgbench -i -s 10 |
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
|
postgres=# \d List of relations Schema | Name | Type | Owner --------+------------------+-------+---------- public | pgbench_accounts | table | postgres public | pgbench_branches | table | postgres public | pgbench_history | table | postgres public | pgbench_tellers | table | postgres (4 rows ) postgres=# select * from pgbench_accounts limit 1; aid | bid | abalance | filler -----+-----+----------+-------------------------------------------------------------------------------------- 1 | 1 | 0 | (1 row) postgres=# select * from pgbench_branches limit 1; bid | bbalance | filler -----+----------+-------- 1 | 0 | (1 row) postgres=# select * from pgbench_history limit 1; tid | bid | aid | delta | mtime | filler -----+-----+-----+-------+-------+-------- (0 rows ) postgres=# select * from pgbench_tellers limit 1; tid | bid | tbalance | filler -----+-----+----------+-------- 1 | 1 | 0 | (1 row) postgres=# select * from pgbench_branches; bid | bbalance | filler -----+----------+-------- 1 | 0 | 2 | 0 | 3 | 0 | 4 | 0 | 5 | 0 | 6 | 0 | 7 | 0 | 8 | 0 | 9 | 0 | 10 | 0 | (10 rows ) postgres=# update pgbench_branches set bbalance=4500000 where bid in (4,7); UPDATE 2 postgres=# |
IN语句
查询要求:找出那些余额(balance)大于0的每个分支(branch)在表在pgbench_accounts中有多少个账户
1.使用IN子句
1
2
3
4
5
6
7
8
|
SELECT count ( aid ),bid FROM pgbench_accounts WHERE bid IN ( SELECT bid FROM pgbench_branches WHERE bbalance > 0 ) GROUP BY bid; |
2.使用ANY子句
1
2
3
4
5
6
7
8
|
SELECT count ( aid ),bid FROM pgbench_accounts WHERE bid = ANY ( SELECT bid FROM pgbench_branches WHERE bbalance > 0 ) GROUP BY bid; |
3.使用EXISTS子句
1
2
3
4
5
6
7
8
|
SELECT count ( aid ),bid FROM pgbench_accounts WHERE EXISTS ( SELECT bid FROM pgbench_branches WHERE bbalance > 0 AND pgbench_accounts.bid = pgbench_branches.bid ) GROUP BY bid; |
4.使用INNER JOIN
1
2
3
4
5
6
7
8
9
|
SELECT count ( aid ),a.bid FROM pgbench_accounts a JOIN pgbench_branches b ON a.bid = b.bid WHERE b.bbalance > 0 GROUP BY a.bid; |
在完成这个查询要求的时候,有人可能会假设exists和inner join性能可能会更好,因为他们可以使用两表连接的逻辑和优化。而IN和ANY子句需要使用子查询。
然而,PostgreSQL(10版本之后)已经智能的足以对上面四种写法产生相同的执行计划!
所有上面的写法都会产生相同的执行计划:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
|
QUERY PLAN ------------------------------------------------------------------------------------------------------------------------------------------------------------------ Finalize GroupAggregate (cost=23327.73..23330.26 rows =10 width=12) (actual time =97.199..99.014 rows =2 loops=1) Group Key : a.bid -> Gather Merge (cost=23327.73..23330.06 rows =20 width=12) (actual time =97.191..99.006 rows =6 loops=1) Workers Planned: 2 Workers Launched: 2 -> Sort (cost=22327.70..22327.73 rows =10 width=12) (actual time =93.762..93.766 rows =2 loops=3) Sort Key : a.bid Sort Method: quicksort Memory: 25kB Worker 0: Sort Method: quicksort Memory: 25kB Worker 1: Sort Method: quicksort Memory: 25kB -> Partial HashAggregate (cost=22327.44..22327.54 rows =10 width=12) (actual time =93.723..93.727 rows =2 loops=3) Group Key : a.bid -> Hash Join (cost=1.14..22119.10 rows =41667 width=8) (actual time =24.024..83.263 rows =66667 loops=3) Hash Cond: (a.bid = b.bid) -> Parallel Seq Scan on pgbench_accounts a (cost=0.00..20560.67 rows =416667 width=8) (actual time =0.023..43.151 rows =333333 loops=3) -> Hash (cost=1.12..1.12 rows =1 width=4) (actual time =0.027..0.028 rows =2 loops=3) Buckets: 1024 Batches: 1 Memory Usage: 9kB -> Seq Scan on pgbench_branches b (cost=0.00..1.12 rows =1 width=4) (actual time =0.018..0.020 rows =2 loops=3) Filter: (bbalance > 0) Rows Removed by Filter: 8 Planning Time : 0.342 ms Execution Time : 99.164 ms (22 rows ) |
那么,我们是否可以得出这样的结论:我们可以随意地编写查询,而PostgreSQL的智能将会处理其余的问题?!
等等!
如果我们考虑排除情况,事情会变得不同。
排除查询
查询要求:找出那些余额(balance)不大于0的每个分支(branch)在表在pgbench_accounts中有多少个账户
1.使用NOT IN
1
2
3
4
5
6
7
8
|
SELECT count ( aid ),bid FROM pgbench_accounts WHERE bid NOT IN ( SELECT bid FROM pgbench_branches WHERE bbalance > 0 ) GROUP BY bid; |
执行计划:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
|
QUERY PLAN ---------------------------------------------------------------------------------------------------------------------------------------------------------- Finalize GroupAggregate (cost=23645.42..23647.95 rows =10 width=12) (actual time =128.606..130.502 rows =8 loops=1) Group Key : pgbench_accounts.bid -> Gather Merge (cost=23645.42..23647.75 rows =20 width=12) (actual time =128.598..130.490 rows =24 loops=1) Workers Planned: 2 Workers Launched: 2 -> Sort (cost=22645.39..22645.42 rows =10 width=12) (actual time =124.960..124.963 rows =8 loops=3) Sort Key : pgbench_accounts.bid Sort Method: quicksort Memory: 25kB Worker 0: Sort Method: quicksort Memory: 25kB Worker 1: Sort Method: quicksort Memory: 25kB -> Partial HashAggregate (cost=22645.13..22645.23 rows =10 width=12) (actual time =124.917..124.920 rows =8 loops=3) Group Key : pgbench_accounts.bid -> Parallel Seq Scan on pgbench_accounts (cost=1.13..21603.46 rows =208333 width=8) (actual time =0.078..83.134 rows =266667 loops=3) Filter: ( NOT (hashed SubPlan 1)) Rows Removed by Filter: 66667 SubPlan 1 -> Seq Scan on pgbench_branches (cost=0.00..1.12 rows =1 width=4) (actual time =0.020..0.021 rows =2 loops=3) Filter: (bbalance > 0) Rows Removed by Filter: 8 Planning Time : 0.310 ms Execution Time : 130.620 ms (21 rows ) postgres=# |
2.使用<>ALL
1
2
3
4
5
6
7
8
|
SELECT count ( aid ),bid FROM pgbench_accounts WHERE bid <> ALL ( SELECT bid FROM pgbench_branches WHERE bbalance > 0 ) GROUP BY bid; |
执行计划:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
|
QUERY PLAN ------------------------------------------------------------------------------------------------------------------------------------------------------------ Finalize GroupAggregate (cost=259581.79..259584.32 rows =10 width=12) (actual time =418.220..419.913 rows =8 loops=1) Group Key : pgbench_accounts.bid -> Gather Merge (cost=259581.79..259584.12 rows =20 width=12) (actual time =418.212..419.902 rows =24 loops=1) Workers Planned: 2 Workers Launched: 2 -> Sort (cost=258581.76..258581.79 rows =10 width=12) (actual time =413.906..413.909 rows =8 loops=3) Sort Key : pgbench_accounts.bid Sort Method: quicksort Memory: 25kB Worker 0: Sort Method: quicksort Memory: 25kB Worker 1: Sort Method: quicksort Memory: 25kB -> Partial HashAggregate (cost=258581.50..258581.60 rows =10 width=12) (actual time =413.872..413.875 rows =8 loops=3) Group Key : pgbench_accounts.bid -> Parallel Seq Scan on pgbench_accounts (cost=0.00..257539.83 rows =208333 width=8) (actual time =0.054..367.244 rows =266667 loops=3) Filter: (SubPlan 1) Rows Removed by Filter: 66667 SubPlan 1 -> Materialize (cost=0.00..1.13 rows =1 width=4) (actual time =0.000..0.001 rows =2 loops=1000000) -> Seq Scan on pgbench_branches (cost=0.00..1.12 rows =1 width=4) (actual time =0.001..0.001 rows =2 loops=337880) Filter: (bbalance > 0) Rows Removed by Filter: 8 Planning Time : 0.218 ms Execution Time : 420.035 ms (22 rows ) postgres=# |
3.使用NOT EXISTS
1
2
3
4
5
6
7
8
|
SELECT count ( aid ),bid FROM pgbench_accounts WHERE NOT EXISTS ( SELECT bid FROM pgbench_branches WHERE bbalance > 0 AND pgbench_accounts.bid = pgbench_branches.bid ) GROUP BY bid; |
执行计划:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
|
QUERY PLAN ---------------------------------------------------------------------------------------------------------------------------------------------------------------- Finalize GroupAggregate (cost=28327.72..28330.25 rows =10 width=12) (actual time =152.024..153.931 rows =8 loops=1) Group Key : pgbench_accounts.bid -> Gather Merge (cost=28327.72..28330.05 rows =20 width=12) (actual time =152.014..153.917 rows =24 loops=1) Workers Planned: 2 Workers Launched: 2 -> Sort (cost=27327.70..27327.72 rows =10 width=12) (actual time =147.782..147.786 rows =8 loops=3) Sort Key : pgbench_accounts.bid Sort Method: quicksort Memory: 25kB Worker 0: Sort Method: quicksort Memory: 25kB Worker 1: Sort Method: quicksort Memory: 25kB -> Partial HashAggregate (cost=27327.43..27327.53 rows =10 width=12) (actual time =147.732..147.737 rows =8 loops=3) Group Key : pgbench_accounts.bid -> Hash Anti Join (cost=1.14..25452.43 rows =375000 width=8) (actual time =0.134..101.884 rows =266667 loops=3) Hash Cond: (pgbench_accounts.bid = pgbench_branches.bid) -> Parallel Seq Scan on pgbench_accounts (cost=0.00..20560.67 rows =416667 width=8) (actual time =0.032..45.174 rows =333333 loops=3) -> Hash (cost=1.12..1.12 rows =1 width=4) (actual time =0.036..0.037 rows =2 loops=3) Buckets: 1024 Batches: 1 Memory Usage: 9kB -> Seq Scan on pgbench_branches (cost=0.00..1.12 rows =1 width=4) (actual time =0.025..0.027 rows =2 loops=3) Filter: (bbalance > 0) Rows Removed by Filter: 8 Planning Time : 0.322 ms Execution Time : 154.040 ms (22 rows ) postgres=# |
4.使用LEFT JOIN和IS NULL
1
2
3
4
5
6
7
8
9
|
SELECT count ( aid ),a.bid FROM pgbench_accounts a LEFT JOIN pgbench_branches b ON a.bid = b.bid AND b.bbalance > 0 WHERE b.bid IS NULL GROUP BY a.bid; |
执行计划:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
|
QUERY PLAN ------------------------------------------------------------------------------------------------------------------------------------------------------------------ Finalize GroupAggregate (cost=28327.72..28330.25 rows =10 width=12) (actual time =145.298..147.096 rows =8 loops=1) Group Key : a.bid -> Gather Merge (cost=28327.72..28330.05 rows =20 width=12) (actual time =145.288..147.083 rows =24 loops=1) Workers Planned: 2 Workers Launched: 2 -> Sort (cost=27327.70..27327.72 rows =10 width=12) (actual time =141.883..141.887 rows =8 loops=3) Sort Key : a.bid Sort Method: quicksort Memory: 25kB Worker 0: Sort Method: quicksort Memory: 25kB Worker 1: Sort Method: quicksort Memory: 25kB -> Partial HashAggregate (cost=27327.43..27327.53 rows =10 width=12) (actual time =141.842..141.847 rows =8 loops=3) Group Key : a.bid -> Hash Anti Join (cost=1.14..25452.43 rows =375000 width=8) (actual time =0.087..99.535 rows =266667 loops=3) Hash Cond: (a.bid = b.bid) -> Parallel Seq Scan on pgbench_accounts a (cost=0.00..20560.67 rows =416667 width=8) (actual time =0.025..44.337 rows =333333 loops=3) -> Hash (cost=1.12..1.12 rows =1 width=4) (actual time =0.026..0.027 rows =2 loops=3) Buckets: 1024 Batches: 1 Memory Usage: 9kB -> Seq Scan on pgbench_branches b (cost=0.00..1.12 rows =1 width=4) (actual time =0.019..0.020 rows =2 loops=3) Filter: (bbalance > 0) Rows Removed by Filter: 8 Planning Time : 0.231 ms Execution Time : 147.180 ms (22 rows ) postgres=# |
NOT IN 和 <> ALL生成执行计划都包含了一个子查询。他们是各自独立的。
而NOT EXISTS和LEFT JOIN生成了相同的执行计划。
这些hash连接(或hash anti join)是完成查询要求的最灵活的方式。这也是推荐exists或join的原因。因此,推荐使用exists或join的经验法则是有效的。
但是,我们继续往下看! 即使有了子查询执行计划,NOT IN子句的执行时间也会更好?
是的。PostgreSQL做了出色的优化,PostgreSQL将子查询计划进行了hash处理。因此PostgreSQL对如何处理IN子句有了更好的理解,这是一种逻辑思维方式,因为很多人倾向于使用IN子句。子查询返回的行很少,但即使子查询返回几百行,也会发生同样的情况。
但是,如果子查询返回大量行(几十万行)怎么办?让我们尝试一个简单的测试:
1
2
3
4
5
6
7
8
9
10
11
12
13
|
CREATE TABLE t1 AS SELECT * FROM generate_series(0, 500000) id; CREATE TABLE t2 AS SELECT (random() * 4000000):: integer id FROM generate_series(0, 4000000); ANALYZE t1; ANALYZE t2; EXPLAIN SELECT id FROM t1 WHERE id NOT IN ( SELECT id FROM t2); |
执行计划:
1
2
3
4
5
6
7
8
9
10
11
12
|
QUERY PLAN -------------------------------------------------------------------------------- Gather (cost=1000.00..15195064853.01 rows =250000 width=4) Workers Planned: 1 -> Parallel Seq Scan on t1 (cost=0.00..15195038853.01 rows =147059 width=4) Filter: ( NOT (SubPlan 1)) SubPlan 1 -> Materialize (cost=0.00..93326.01 rows =4000001 width=4) -> Seq Scan on t2 (cost=0.00..57700.01 rows =4000001 width=4) (7 rows ) postgres=# |
这里,执行计划将子查询进行了物化。代价评估变成了15195038853.01。(PostgreSQL的默认设置,如果t2表的行低于100k,会将子查询进行hash)。这样就会严重影响性能。因此,对于那种子查询返回的行数很少的场景,IN子句可以起到很好的作用。
其它注意点
有的!在我们用不同的方式写查询的时候,可能有数据类型的转换。
比如,语句:
1
|
EXPLAIN ANALYZE SELECT * FROM emp WHERE gen = ANY (ARRAY[ 'M' , 'F' ]); |
就会发生隐式的类型转换:
1
2
|
Seq Scan on emp (cost=0.00..1.04 rows =2 width=43) (actual time =0.023..0.026 rows =3 loops=1) Filter: ((gen)::text = ANY ( '{M,F}' ::text[])) |
这里的(gen)::text就发生了类型转换。如果在大表上,这种类型转换的代价会很高,因此,PostgreSQL对IN子句做了更好的处理。
1
2
3
4
|
EXPLAIN ANALYZE SELECT * FROM emp WHERE gen IN ( 'M' , 'F' ); Seq Scan on emp (cost=0.00..1.04 rows =3 width=43) (actual time =0.030..0.034 rows =3 loops=1) Filter: (gen = ANY ( '{M,F}' ::bpchar[])) |
将IN子句转换成了ANY子句,没有对gen列进行类型转换。而是将M\F转成了bpchar(内部等价于char)
总结
简单来说,exists和直接join表通常比较好。
很多情况下,PostgreSQL将IN子句换成被hash的子计划。在一些特殊场景下,IN可以获得更好的执行计划。
以上为个人经验,希望能给大家一个参考,也希望大家多多支持服务器之家。如有错误或未考虑完全的地方,望不吝赐教。
原文链接:https://www.cnblogs.com/abclife/p/13940948.html