服务器之家

服务器之家 > 正文

python实现泊松图像融合

时间:2021-03-22 00:09     来源/作者:yjl9122

本文实例为大家分享了python实现泊松图像融合的具体代码,供大家参考,具体内容如下

?
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
```
from __future__ import division
import numpy as np
import scipy.fftpack
import scipy.ndimage
import cv2
import matplotlib.pyplot as plt
#sns.set(style="darkgrid")
 
 
def DST(x):
  """
  Converts Scipy's DST output to Matlab's DST (scaling).
  """
  X = scipy.fftpack.dst(x,type=1,axis=0)
  return X/2.0
 
def IDST(X):
  """
  Inverse DST. Python -> Matlab
  """
  n = X.shape[0]
  x = np.real(scipy.fftpack.idst(X,type=1,axis=0))
  return x/(n+1.0)
 
def get_grads(im):
  """
  return the x and y gradients.
  """
  [H,W] = im.shape
  Dx,Dy = np.zeros((H,W),'float32'), np.zeros((H,W),'float32')
  j,k = np.atleast_2d(np.arange(0,H-1)).T, np.arange(0,W-1)
  Dx[j,k] = im[j,k+1] - im[j,k]
  Dy[j,k] = im[j+1,k] - im[j,k]
  return Dx,Dy
 
def get_laplacian(Dx,Dy):
  """
  return the laplacian
  """
  [H,W] = Dx.shape
  Dxx, Dyy = np.zeros((H,W)), np.zeros((H,W))
  j,k = np.atleast_2d(np.arange(0,H-1)).T, np.arange(0,W-1)
  Dxx[j,k+1] = Dx[j,k+1] - Dx[j,k]
  Dyy[j+1,k] = Dy[j+1,k] - Dy[j,k]
  return Dxx+Dyy
 
def poisson_solve(gx,gy,bnd):
  # convert to double:
  gx = gx.astype('float32')
  gy = gy.astype('float32')
  bnd = bnd.astype('float32')
 
  H,W = bnd.shape
  L = get_laplacian(gx,gy)
 
  # set the interior of the boundary-image to 0:
  bnd[1:-1,1:-1] = 0
  # get the boundary laplacian:
  L_bp = np.zeros_like(L)
  L_bp[1:-1,1:-1] = -4*bnd[1:-1,1:-1] \
           + bnd[1:-1,2:] + bnd[1:-1,0:-2] \
           + bnd[2:,1:-1] + bnd[0:-2,1:-1] # delta-x
  L = L - L_bp
  L = L[1:-1,1:-1]
 
  # compute the 2D DST:
  L_dst = DST(DST(L).T).T #first along columns, then along rows
 
  # normalize:
  [xx,yy] = np.meshgrid(np.arange(1,W-1),np.arange(1,H-1))
  D = (2*np.cos(np.pi*xx/(W-1))-2) + (2*np.cos(np.pi*yy/(H-1))-2)
  L_dst = L_dst/D
 
  img_interior = IDST(IDST(L_dst).T).T # inverse DST for rows and columns
 
  img = bnd.copy()
 
  img[1:-1,1:-1] = img_interior
 
  return img
 
def blit_images(im_top,im_back,scale_grad=1.0,mode='max'):
  """
  combine images using poission editing.
  IM_TOP and IM_BACK should be of the same size.
  """
  assert np.all(im_top.shape==im_back.shape)
 
  im_top = im_top.copy().astype('float32')
  im_back = im_back.copy().astype('float32')
  im_res = np.zeros_like(im_top)
 
  # frac of gradients which come from source:
  for ch in xrange(im_top.shape[2]):
    ims = im_top[:,:,ch]
    imd = im_back[:,:,ch]
 
    [gxs,gys] = get_grads(ims)
    [gxd,gyd] = get_grads(imd)
 
    gxs *= scale_grad
    gys *= scale_grad
 
    gxs_idx = gxs!=0
    gys_idx = gys!=0
    # mix the source and target gradients:
    if mode=='max':
      gx = gxs.copy()
      gxm = (np.abs(gxd))>np.abs(gxs)
      gx[gxm] = gxd[gxm]
 
      gy = gys.copy()
      gym = np.abs(gyd)>np.abs(gys)
      gy[gym] = gyd[gym]
 
      # get gradient mixture statistics:
      f_gx = np.sum((gx[gxs_idx]==gxs[gxs_idx]).flat) / (np.sum(gxs_idx.flat)+1e-6)
      f_gy = np.sum((gy[gys_idx]==gys[gys_idx]).flat) / (np.sum(gys_idx.flat)+1e-6)
      if min(f_gx, f_gy) <= 0.35:
        m = 'max'
        if scale_grad > 1:
          m = 'blend'
        return blit_images(im_top, im_back, scale_grad=1.5, mode=m)
 
    elif mode=='src':
      gx,gy = gxd.copy(), gyd.copy()
      gx[gxs_idx] = gxs[gxs_idx]
      gy[gys_idx] = gys[gys_idx]
 
    elif mode=='blend': # from recursive call:
      # just do an alpha blend
      gx = gxs+gxd
      gy = gys+gyd
 
    im_res[:,:,ch] = np.clip(poisson_solve(gx,gy,imd),0,255)
 
  return im_res.astype('uint8')
 
 
def contiguous_regions(mask):
  """
  return a list of (ind0, ind1) such that mask[ind0:ind1].all() is
  True and we cover all such regions
  """
  in_region = None
  boundaries = []
  for i, val in enumerate(mask):
    if in_region is None and val:
      in_region = i
    elif in_region is not None and not val:
      boundaries.append((in_region, i))
      in_region = None
 
  if in_region is not None:
    boundaries.append((in_region, i+1))
  return boundaries
 
 
if __name__=='__main__':
  """
  example usage:
  """
  import seaborn as sns
 
  im_src = cv2.imread('../f01006.jpg').astype('float32')
 
  im_dst = cv2.imread('../f01006-5.jpg').astype('float32')
 
  mu = np.mean(np.reshape(im_src,[im_src.shape[0]*im_src.shape[1],3]),axis=0)
  # print mu
  sz = (1920,1080)
  im_src = cv2.resize(im_src,sz)
  im_dst = cv2.resize(im_dst,sz)
 
  im0 = im_dst[:,:,0] > 100
  im_dst[im0,:] = im_src[im0,:]
  im_dst[~im0,:] = 50
  im_dst = cv2.GaussianBlur(im_dst,(5,5),5)
 
  im_alpha = 0.8*im_dst + 0.2*im_src
 
  # plt.imshow(im_dst)
  # plt.show()
 
  im_res = blit_images(im_src,im_dst)
 
  import scipy
  scipy.misc.imsave('orig.png',im_src[:,:,::-1].astype('uint8'))
  scipy.misc.imsave('alpha.png',im_alpha[:,:,::-1].astype('uint8'))
  scipy.misc.imsave('poisson.png',im_res[:,:,::-1].astype('uint8'))
 
  im_actual_L = cv2.cvtColor(im_src.astype('uint8'),cv2.cv.CV_BGR2Lab)[:,:,0]
  im_alpha_L = cv2.cvtColor(im_alpha.astype('uint8'),cv2.cv.CV_BGR2Lab)[:,:,0]
  im_poisson_L = cv2.cvtColor(im_res.astype('uint8'),cv2.cv.CV_BGR2Lab)[:,:,0]
 
  # plt.imshow(im_alpha_L)
  # plt.show()
  for i in xrange(500,im_alpha_L.shape[1],5):
    l_actual = im_actual_L[i,:]#-im_actual_L[i,:-1]
    l_alpha = im_alpha_L[i,:]#-im_alpha_L[i,:-1]
    l_poisson = im_poisson_L[i,:]#-im_poisson_L[i,:-1]
 
 
    with sns.axes_style("darkgrid"):
      plt.subplot(2,1,2)
      #plt.plot(l_alpha,label='alpha')
 
      plt.plot(l_poisson,label='poisson')
      plt.hold(True)
      plt.plot(l_actual,label='actual')
      plt.legend()
 
      # find "text regions":
      is_txt = ~im0[i,:]
      t_loc = contiguous_regions(is_txt)
      ax = plt.gca()
      for b0,b1 in t_loc:
        ax.axvspan(b0, b1, facecolor='red', alpha=0.1)
 
    with sns.axes_style("white"):
      plt.subplot(2,1,1)
      plt.imshow(im_alpha[:,:,::-1].astype('uint8'))
      plt.hold(True)
      plt.plot([0,im_alpha_L.shape[0]-1],[i,i],'r')
      plt.axis('image')
      plt.show()
 
 
  plt.subplot(1,3,1)
  plt.imshow(im_src[:,:,::-1].astype('uint8'))
  plt.subplot(1,3,2)
  plt.imshow(im_alpha[:,:,::-1].astype('uint8'))
  plt.subplot(1,3,3
  plt.imshow(im_res[:,:,::-1]) #cv2 reads in BGR
  plt.show()

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持服务器之家。

原文链接:https://blog.csdn.net/yjl9122/article/details/72730236

相关文章

热门资讯

2020微信伤感网名听哭了 让对方看到心疼的伤感网名大全
2020微信伤感网名听哭了 让对方看到心疼的伤感网名大全 2019-12-26
yue是什么意思 网络流行语yue了是什么梗
yue是什么意思 网络流行语yue了是什么梗 2020-10-11
背刺什么意思 网络词语背刺是什么梗
背刺什么意思 网络词语背刺是什么梗 2020-05-22
Intellij idea2020永久破解,亲测可用!!!
Intellij idea2020永久破解,亲测可用!!! 2020-07-29
苹果12mini价格表官网报价 iPhone12mini全版本价格汇总
苹果12mini价格表官网报价 iPhone12mini全版本价格汇总 2020-11-13
返回顶部