本文实例为大家分享了python实现泊松图像融合的具体代码,供大家参考,具体内容如下
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
|
``` from __future__ import division import numpy as np import scipy.fftpack import scipy.ndimage import cv2 import matplotlib.pyplot as plt #sns.set(style="darkgrid") def DST(x): """ Converts Scipy's DST output to Matlab's DST (scaling). """ X = scipy.fftpack.dst(x, type = 1 ,axis = 0 ) return X / 2.0 def IDST(X): """ Inverse DST. Python -> Matlab """ n = X.shape[ 0 ] x = np.real(scipy.fftpack.idst(X, type = 1 ,axis = 0 )) return x / (n + 1.0 ) def get_grads(im): """ return the x and y gradients. """ [H,W] = im.shape Dx,Dy = np.zeros((H,W), 'float32' ), np.zeros((H,W), 'float32' ) j,k = np.atleast_2d(np.arange( 0 ,H - 1 )).T, np.arange( 0 ,W - 1 ) Dx[j,k] = im[j,k + 1 ] - im[j,k] Dy[j,k] = im[j + 1 ,k] - im[j,k] return Dx,Dy def get_laplacian(Dx,Dy): """ return the laplacian """ [H,W] = Dx.shape Dxx, Dyy = np.zeros((H,W)), np.zeros((H,W)) j,k = np.atleast_2d(np.arange( 0 ,H - 1 )).T, np.arange( 0 ,W - 1 ) Dxx[j,k + 1 ] = Dx[j,k + 1 ] - Dx[j,k] Dyy[j + 1 ,k] = Dy[j + 1 ,k] - Dy[j,k] return Dxx + Dyy def poisson_solve(gx,gy,bnd): # convert to double: gx = gx.astype( 'float32' ) gy = gy.astype( 'float32' ) bnd = bnd.astype( 'float32' ) H,W = bnd.shape L = get_laplacian(gx,gy) # set the interior of the boundary-image to 0: bnd[ 1 : - 1 , 1 : - 1 ] = 0 # get the boundary laplacian: L_bp = np.zeros_like(L) L_bp[ 1 : - 1 , 1 : - 1 ] = - 4 * bnd[ 1 : - 1 , 1 : - 1 ] \ + bnd[ 1 : - 1 , 2 :] + bnd[ 1 : - 1 , 0 : - 2 ] \ + bnd[ 2 :, 1 : - 1 ] + bnd[ 0 : - 2 , 1 : - 1 ] # delta-x L = L - L_bp L = L[ 1 : - 1 , 1 : - 1 ] # compute the 2D DST: L_dst = DST(DST(L).T).T #first along columns, then along rows # normalize: [xx,yy] = np.meshgrid(np.arange( 1 ,W - 1 ),np.arange( 1 ,H - 1 )) D = ( 2 * np.cos(np.pi * xx / (W - 1 )) - 2 ) + ( 2 * np.cos(np.pi * yy / (H - 1 )) - 2 ) L_dst = L_dst / D img_interior = IDST(IDST(L_dst).T).T # inverse DST for rows and columns img = bnd.copy() img[ 1 : - 1 , 1 : - 1 ] = img_interior return img def blit_images(im_top,im_back,scale_grad = 1.0 ,mode = 'max' ): """ combine images using poission editing. IM_TOP and IM_BACK should be of the same size. """ assert np. all (im_top.shape = = im_back.shape) im_top = im_top.copy().astype( 'float32' ) im_back = im_back.copy().astype( 'float32' ) im_res = np.zeros_like(im_top) # frac of gradients which come from source: for ch in xrange (im_top.shape[ 2 ]): ims = im_top[:,:,ch] imd = im_back[:,:,ch] [gxs,gys] = get_grads(ims) [gxd,gyd] = get_grads(imd) gxs * = scale_grad gys * = scale_grad gxs_idx = gxs! = 0 gys_idx = gys! = 0 # mix the source and target gradients: if mode = = 'max' : gx = gxs.copy() gxm = (np. abs (gxd))>np. abs (gxs) gx[gxm] = gxd[gxm] gy = gys.copy() gym = np. abs (gyd)>np. abs (gys) gy[gym] = gyd[gym] # get gradient mixture statistics: f_gx = np. sum ((gx[gxs_idx] = = gxs[gxs_idx]).flat) / (np. sum (gxs_idx.flat) + 1e - 6 ) f_gy = np. sum ((gy[gys_idx] = = gys[gys_idx]).flat) / (np. sum (gys_idx.flat) + 1e - 6 ) if min (f_gx, f_gy) < = 0.35 : m = 'max' if scale_grad > 1 : m = 'blend' return blit_images(im_top, im_back, scale_grad = 1.5 , mode = m) elif mode = = 'src' : gx,gy = gxd.copy(), gyd.copy() gx[gxs_idx] = gxs[gxs_idx] gy[gys_idx] = gys[gys_idx] elif mode = = 'blend' : # from recursive call: # just do an alpha blend gx = gxs + gxd gy = gys + gyd im_res[:,:,ch] = np.clip(poisson_solve(gx,gy,imd), 0 , 255 ) return im_res.astype( 'uint8' ) def contiguous_regions(mask): """ return a list of (ind0, ind1) such that mask[ind0:ind1].all() is True and we cover all such regions """ in_region = None boundaries = [] for i, val in enumerate (mask): if in_region is None and val: in_region = i elif in_region is not None and not val: boundaries.append((in_region, i)) in_region = None if in_region is not None : boundaries.append((in_region, i + 1 )) return boundaries if __name__ = = '__main__' : """ example usage: """ import seaborn as sns im_src = cv2.imread( '../f01006.jpg' ).astype( 'float32' ) im_dst = cv2.imread( '../f01006-5.jpg' ).astype( 'float32' ) mu = np.mean(np.reshape(im_src,[im_src.shape[ 0 ] * im_src.shape[ 1 ], 3 ]),axis = 0 ) # print mu sz = ( 1920 , 1080 ) im_src = cv2.resize(im_src,sz) im_dst = cv2.resize(im_dst,sz) im0 = im_dst[:,:, 0 ] > 100 im_dst[im0,:] = im_src[im0,:] im_dst[~im0,:] = 50 im_dst = cv2.GaussianBlur(im_dst,( 5 , 5 ), 5 ) im_alpha = 0.8 * im_dst + 0.2 * im_src # plt.imshow(im_dst) # plt.show() im_res = blit_images(im_src,im_dst) import scipy scipy.misc.imsave( 'orig.png' ,im_src[:,:,:: - 1 ].astype( 'uint8' )) scipy.misc.imsave( 'alpha.png' ,im_alpha[:,:,:: - 1 ].astype( 'uint8' )) scipy.misc.imsave( 'poisson.png' ,im_res[:,:,:: - 1 ].astype( 'uint8' )) im_actual_L = cv2.cvtColor(im_src.astype( 'uint8' ),cv2.cv.CV_BGR2Lab)[:,:, 0 ] im_alpha_L = cv2.cvtColor(im_alpha.astype( 'uint8' ),cv2.cv.CV_BGR2Lab)[:,:, 0 ] im_poisson_L = cv2.cvtColor(im_res.astype( 'uint8' ),cv2.cv.CV_BGR2Lab)[:,:, 0 ] # plt.imshow(im_alpha_L) # plt.show() for i in xrange ( 500 ,im_alpha_L.shape[ 1 ], 5 ): l_actual = im_actual_L[i,:] #-im_actual_L[i,:-1] l_alpha = im_alpha_L[i,:] #-im_alpha_L[i,:-1] l_poisson = im_poisson_L[i,:] #-im_poisson_L[i,:-1] with sns.axes_style( "darkgrid" ): plt.subplot( 2 , 1 , 2 ) #plt.plot(l_alpha,label='alpha') plt.plot(l_poisson,label = 'poisson' ) plt.hold( True ) plt.plot(l_actual,label = 'actual' ) plt.legend() # find "text regions": is_txt = ~im0[i,:] t_loc = contiguous_regions(is_txt) ax = plt.gca() for b0,b1 in t_loc: ax.axvspan(b0, b1, facecolor = 'red' , alpha = 0.1 ) with sns.axes_style( "white" ): plt.subplot( 2 , 1 , 1 ) plt.imshow(im_alpha[:,:,:: - 1 ].astype( 'uint8' )) plt.hold( True ) plt.plot([ 0 ,im_alpha_L.shape[ 0 ] - 1 ],[i,i], 'r' ) plt.axis( 'image' ) plt.show() plt.subplot( 1 , 3 , 1 ) plt.imshow(im_src[:,:,:: - 1 ].astype( 'uint8' )) plt.subplot( 1 , 3 , 2 ) plt.imshow(im_alpha[:,:,:: - 1 ].astype( 'uint8' )) plt.subplot( 1 , 3 , 3 ) plt.imshow(im_res[:,:,:: - 1 ]) #cv2 reads in BGR plt.show() |
以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持服务器之家。
原文链接:https://blog.csdn.net/yjl9122/article/details/72730236