如下所示:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
|
from __future__ import print_function,division import tensorflow as tf #create a Variable w = tf.Variable(initial_value = [[ 1 , 2 ],[ 3 , 4 ]],dtype = tf.float32) x = tf.Variable(initial_value = [[ 1 , 1 ],[ 1 , 1 ]],dtype = tf.float32,validate_shape = False ) init_op = tf.global_variables_initializer() update = tf.assign(x,[[ 1 , 2 ],[ 1 , 2 ]]) with tf.Session() as session: session.run(init_op) session.run(update) x = session.run(x) print (x) |
实验结果:
1
2
|
[[ 1. 2. ] [ 1. 2. ]] |
tensorflow使用assign(variable,new_value)来更改变量的值,但是真正作用在garph中,必须要调用gpu或者cpu运行这个更新过程。
session.run(update)
tensorflow不支持直接对变量进行赋值更改
1
2
3
4
5
6
7
8
9
10
11
12
|
from __future__ import print_function,division import tensorflow as tf #create a Variable x = tf.Variable(initial_value = [[ 1 , 1 ],[ 1 , 1 ]],dtype = tf.float32,validate_shape = False ) x = [[ 1 , 3 ],[ 2 , 4 ]] init_op = tf.global_variables_initializer() update = tf.assign(x,[[ 1 , 2 ],[ 1 , 2 ]]) with tf.Session() as session: session.run(init_op) session.run(update) print (session.run(x)) |
error:
1
2
3
4
5
6
7
8
9
|
"C:\Program Files\Anaconda3\python.exe" D: / pycharmprogram / tensorflow_learn / assign_learn / assign_learn.py Traceback (most recent call last): File "D:/pycharmprogram/tensorflow_learn/assign_learn/assign_learn.py" , line 8 , in <module> update = tf.assign(x,[[ 1 , 2 ],[ 1 , 2 ]]) File "C:\Program Files\Anaconda3\lib\site-packages\tensorflow\python\ops\state_ops.py" , line 271 , in assign if ref.dtype._is_ref_dtype: AttributeError: 'list' object has no attribute 'dtype' Process finished with exit code 1 |
以上这篇tensorflow更改变量的值实例就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持服务器之家。
原文链接:https://blog.csdn.net/baidu_15113429/article/details/78078153