A*作为最常用的路径搜索算法,值得我们去深刻的研究。路径规划项目。先看一下维基百科给的算法解释:https://en.wikipedia.org/wiki/A*_search_algorithm
A *是最佳优先搜索它通过在解决方案的所有可能路径(目标)中搜索导致成本最小(行进距离最短,时间最短等)的问题来解决问题。 ),并且在这些路径中,它首先考虑那些似乎最快速地引导到解决方案的路径。它是根据加权图制定的:从图的特定节点开始,它构造从该节点开始的路径树,一次一步地扩展路径,直到其一个路径在预定目标节点处结束。
在其主循环的每次迭代中,A *需要确定将其部分路径中的哪些扩展为一个或多个更长的路径。它是基于成本(总重量)的估计仍然到达目标节点。具体而言,A *选择最小化的路径
F(N)= G(N)+ H(n)
其中n是路径上的最后一个节点,g(n)是从起始节点到n的路径的开销,h(n)是一个启发式,用于估计从n到目标的最便宜路径的开销。启发式是特定于问题的。为了找到实际最短路径的算法,启发函数必须是可接受的,这意味着它永远不会高估实际成本到达最近的目标节点。
维基百科给出的伪代码:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
|
function A * (start, goal) / / The set of nodes already evaluated closedSet : = {} / / The set of currently discovered nodes that are not evaluated yet. / / Initially, only the start node is known. openSet : = {start} / / For each node, which node it can most efficiently be reached from . / / If a node can be reached from many nodes, cameFrom will eventually contain the / / most efficient previous step. cameFrom : = an empty map / / For each node, the cost of getting from the start node to that node. gScore : = map with default value of Infinity / / The cost of going from start to start is zero. gScore[start] : = 0 / / For each node, the total cost of getting from the start node to the goal / / by passing by that node. That value is partly known, partly heuristic. fScore : = map with default value of Infinity / / For the first node, that value is completely heuristic. fScore[start] : = heuristic_cost_estimate(start, goal) while openSet is not empty current : = the node in openSet having the lowest fScore[] value if current = goal return reconstruct_path(cameFrom, current) openSet.Remove(current) closedSet.Add(current) for each neighbor of current if neighbor in closedSet continue / / Ignore the neighbor which is already evaluated. if neighbor not in openSet / / Discover a new node openSet.Add(neighbor) / / The distance from start to a neighbor / / the "dist_between" function may vary as per the solution requirements. tentative_gScore : = gScore[current] + dist_between(current, neighbor) if tentative_gScore > = gScore[neighbor] continue / / This is not a better path. / / This path is the best until now. Record it! cameFrom[neighbor] : = current gScore[neighbor] : = tentative_gScore fScore[neighbor] : = gScore[neighbor] + heuristic_cost_estimate(neighbor, goal) return failure function reconstruct_path(cameFrom, current) total_path : = {current} while current in cameFrom.Keys: current : = cameFrom[current] total_path.append(current) return total_path |
下面是UDACITY课程中路径规划项目,结合上面的伪代码,用python 实现A*
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
|
import math def shortest_path(M,start,goal): sx = M.intersections[start][ 0 ] sy = M.intersections[start][ 1 ] gx = M.intersections[goal][ 0 ] gy = M.intersections[goal][ 1 ] h = math.sqrt((sx - gx) * (sx - gx) + (sy - gy) * (sy - gy)) closedSet = set () openSet = set () openSet.add(start) gScore = {} gScore[start] = 0 fScore = {} fScore[start] = h cameFrom = {} sumg = 0 NEW = 0 BOOL = False while len (openSet)! = 0 : MAX = 1000 for new in openSet: print ( "new" ,new) if fScore[new]< MAX : MAX = fScore[new] #print("MAX=",MAX) NEW = new current = NEW print ( "current=" ,current) if current = = goal: return reconstruct_path(cameFrom,current) openSet.remove(current) closedSet.add(current) #dafult=M.roads(current) for neighbor in M.roads[current]: BOOL = False print ( "key=" ,neighbor) a = {neighbor} if len (a&closedSet)> 0 : continue print ( "key is not in closeSet" ) if len (a&openSet) = = 0 : openSet.add(neighbor) else : BOOL = True x = M.intersections[current][ 0 ] y = M.intersections[current][ 1 ] x1 = M.intersections[neighbor][ 0 ] y1 = M.intersections[neighbor][ 1 ] g = math.sqrt((x - x1) * (x - x1) + (y - y1) * (y - y1)) h = math.sqrt((x1 - gx) * (x1 - gx) + (y1 - gy) * (y1 - gy)) new_gScore = gScore[current] + g if BOOL = = True : if new_gScore> = gScore[neighbor]: continue print ( "new_gScore" ,new_gScore) cameFrom[neighbor] = current gScore[neighbor] = new_gScore fScore[neighbor] = new_gScore + h print ( "fScore" ,neighbor, "is" ,new_gScore + h) print ( "fScore=" ,new_gScore + h) print ( "__________++--------------++_________" ) def reconstruct_path(cameFrom,current): print ( "已到达lllll" ) total_path = [] total_path.append(current) for key,value in cameFrom.items(): print ( "key" ,key, ":" , "value" ,value) while current in cameFrom.keys(): current = cameFrom[current] total_path.append(current) total_path = list ( reversed (total_path)) return total_path |
以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持服务器之家。
原文链接:https://www.cnblogs.com/fuhang/p/9117694.html