1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
|
# -*- coding: utf-8 -*- from numpy import * import math import copy import cPickle as pickle class ID3DTree( object ): def __init__( self ): # 构造方法 self .tree = {} # 生成树 self .dataSet = [] # 数据集 self .labels = [] # 标签集 # 数据导入函数 def loadDataSet( self , path, labels): recordList = [] fp = open (path, "rb" ) # 读取文件内容 content = fp.read() fp.close() rowList = content.splitlines() # 按行转换为一维表 recordList = [row.split( "\t" ) for row in rowList if row.strip()] # strip()函数删除空格、Tab等 self .dataSet = recordList self .labels = labels # 执行决策树函数 def train( self ): labels = copy.deepcopy( self .labels) self .tree = self .buildTree( self .dataSet, labels) # 构件决策树:穿件决策树主程序 def buildTree( self , dataSet, lables): cateList = [data[ - 1 ] for data in dataSet] # 抽取源数据集中的决策标签列 # 程序终止条件1:如果classList只有一种决策标签,停止划分,返回这个决策标签 if cateList.count(cateList[ 0 ]) = = len (cateList): return cateList[ 0 ] # 程序终止条件2:如果数据集的第一个决策标签只有一个,返回这个标签 if len (dataSet[ 0 ]) = = 1 : return self .maxCate(cateList) # 核心部分 bestFeat = self .getBestFeat(dataSet) # 返回数据集的最优特征轴 bestFeatLabel = lables[bestFeat] tree = {bestFeatLabel: {}} del (lables[bestFeat]) # 抽取最优特征轴的列向量 uniqueVals = set ([data[bestFeat] for data in dataSet]) # 去重 for value in uniqueVals: # 决策树递归生长 subLables = lables[:] # 将删除后的特征类别集建立子类别集 # 按最优特征列和值分隔数据集 splitDataset = self .splitDataSet(dataSet, bestFeat, value) subTree = self .buildTree(splitDataset, subLables) # 构建子树 tree[bestFeatLabel][value] = subTree return tree # 计算出现次数最多的类别标签 def maxCate( self , cateList): items = dict ([(cateList.count(i), i) for i in cateList]) return items[ max (items.keys())] # 计算最优特征 def getBestFeat( self , dataSet): # 计算特征向量维,其中最后一列用于类别标签 numFeatures = len (dataSet[ 0 ]) - 1 # 特征向量维数=行向量维数-1 baseEntropy = self .computeEntropy(dataSet) # 基础熵 bestInfoGain = 0.0 # 初始化最优的信息增益 bestFeature = - 1 # 初始化最优的特征轴 # 外循环:遍历数据集各列,计算最优特征轴 # i为数据集列索引:取值范围0~(numFeatures-1) for i in xrange (numFeatures): uniqueVals = set ([data[i] for data in dataSet]) # 去重 newEntropy = 0.0 for value in uniqueVals: subDataSet = self .splitDataSet(dataSet, i, value) prob = len (subDataSet) / float ( len (dataSet)) newEntropy + = prob * self .computeEntropy(subDataSet) infoGain = baseEntropy - newEntropy if (infoGain > bestInfoGain): # 信息增益大于0 bestInfoGain = infoGain # 用当前信息增益值替代之前的最优增益值 bestFeature = i # 重置最优特征为当前列 return bestFeature # 计算信息熵 # @staticmethod def computeEntropy( self , dataSet): dataLen = float ( len (dataSet)) cateList = [data[ - 1 ] for data in dataSet] # 从数据集中得到类别标签 # 得到类别为key、 出现次数value的字典 items = dict ([(i, cateList.count(i)) for i in cateList]) infoEntropy = 0.0 for key in items: # 香农熵: = -p*log2(p) --infoEntropy = -prob * log(prob, 2) prob = float (items[key]) / dataLen infoEntropy - = prob * math.log(prob, 2 ) return infoEntropy # 划分数据集: 分割数据集; 删除特征轴所在的数据列,返回剩余的数据集 # dataSet : 数据集; axis: 特征轴; value: 特征轴的取值 def splitDataSet( self , dataSet, axis, value): rtnList = [] for featVec in dataSet: if featVec[axis] = = value: rFeatVec = featVec[:axis] # list操作:提取0~(axis-1)的元素 rFeatVec.extend(featVec[axis + 1 :]) rtnList.append(rFeatVec) return rtnList # 存取树到文件 def storetree( self , inputTree, filename): fw = open (filename, 'w' ) pickle.dump(inputTree, fw) fw.close() # 从文件抓取树 def grabTree( self , filename): fr = open (filename) return pickle.load(fr) |
调用代码
1
2
3
4
5
6
7
8
9
10
11
12
13
|
# -*- coding: utf-8 -*- from numpy import * from ID3DTree import * dtree = ID3DTree() # ["age", "revenue", "student", "credit"]对应年龄、收入、学生、信誉4个特征 dtree.loadDataSet( "dataset.dat" , [ "age" , "revenue" , "student" , "credit" ]) dtree.train() dtree.storetree(dtree.tree, "data.tree" ) mytree = dtree.grabTree( "data.tree" ) print mytree |
以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持服务器之家。
原文链接:https://blog.csdn.net/yjIvan/article/details/71194383