本文实例为大家分享了TensorFlow实现Logistic回归的具体代码,供大家参考,具体内容如下
1.导入模块
1
2
3
4
5
6
7
8
9
10
11
12
|
import numpy as np import pandas as pd from pandas import Series,DataFrame from matplotlib import pyplot as plt % matplotlib inline #导入tensorflow import tensorflow as tf #导入MNIST(手写数字数据集) from tensorflow.examples.tutorials.mnist import input_data |
2.获取训练数据和测试数据
1
2
3
4
5
6
7
8
9
10
|
import ssl ssl._create_default_https_context = ssl._create_unverified_context mnist = input_data.read_data_sets( './TensorFlow' ,one_hot = True ) test = mnist.test test_images = test.images train = mnist.train images = train.images |
3.模拟线性方程
1
2
3
4
5
6
7
8
9
10
11
12
13
|
#创建占矩阵位符X,Y X = tf.placeholder(tf.float32,shape = [ None , 784 ]) Y = tf.placeholder(tf.float32,shape = [ None , 10 ]) #随机生成斜率W和截距b W = tf.Variable(tf.zeros([ 784 , 10 ])) b = tf.Variable(tf.zeros([ 10 ])) #根据模拟线性方程得出预测值 y_pre = tf.matmul(X,W) + b #将预测值结果概率化 y_pre_r = tf.nn.softmax(y_pre) |
4.构造损失函数
1
2
3
|
# -y*tf.log(y_pre_r) --->-Pi*log(Pi) 信息熵公式 cost = tf.reduce_mean( - tf.reduce_sum(Y * tf.log(y_pre_r),axis = 1 )) |
5.实现梯度下降,获取最小损失函数
1
2
3
|
#learning_rate:学习率,是进行训练时在最陡的梯度方向上所采取的「步」长; learning_rate = 0.01 optimizer = tf.train.GradientDescentOptimizer(learning_rate).minimize(cost) |
6.TensorFlow初始化,并进行训练
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
|
#定义相关参数 #训练循环次数 training_epochs = 25 #batch 一批,每次训练给算法10个数据 batch_size = 10 #每隔5次,打印输出运算的结果 display_step = 5 #预定义初始化 init = tf.global_variables_initializer() #开始训练 with tf.Session() as sess: #初始化 sess.run(init) #循环训练次数 for epoch in range (training_epochs): avg_cost = 0. #总训练批次total_batch =训练总样本量/每批次样本数量 total_batch = int (train.num_examples / batch_size) for i in range (total_batch): #每次取出100个数据作为训练数据 batch_xs,batch_ys = mnist.train.next_batch(batch_size) _, c = sess.run([optimizer,cost],feed_dict = {X:batch_xs,Y:batch_ys}) avg_cost + = c / total_batch if (epoch + 1 ) % display_step = = 0 : print (batch_xs.shape,batch_ys.shape) print ( 'epoch:' , '%04d' % (epoch + 1 ), 'cost=' , '{:.9f}' . format (avg_cost)) print ( 'Optimization Finished!' ) #7.评估效果 # Test model correct_prediction = tf.equal(tf.argmax(y_pre_r, 1 ),tf.argmax(Y, 1 )) # Calculate accuracy for 3000 examples # tf.cast类型转换 accuracy = tf.reduce_mean(tf.cast(correct_prediction,tf.float32)) print ( "Accuracy:" ,accuracy. eval ({X: mnist.test.images[: 3000 ], Y: mnist.test.labels[: 3000 ]})) |
以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持服务器之家。
原文链接:https://blog.csdn.net/weixin_38748717/article/details/78859124