数据描述
每条数据项储存在列表中,最后一列储存结果
多条数据项形成数据集
1
2
3
4
5
|
data = [[d1,d2,d3...dn,result], [d1,d2,d3...dn,result], . . [d1,d2,d3...dn,result]] |
决策树数据结构
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
|
class DecisionNode: '''决策树节点 ''' def __init__( self ,col = - 1 ,value = None ,results = None ,tb = None ,fb = None ): '''初始化决策树节点 args: col -- 按数据集的col列划分数据集 value -- 以value作为划分col列的参照 result -- 只有叶子节点有,代表最终划分出的子数据集结果统计信息。{‘结果':结果出现次数} rb,fb -- 代表左右子树 ''' self .col = col self .value = value self .results = results self .tb = tb self .fb = fb |
决策树分类的最终结果是将数据项划分出了若干子集,其中每个子集的结果都一样,所以这里采用{‘结果':结果出现次数}的方式表达每个子集
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
|
def pideset(rows,column,value): '''依据数据集rows的column列的值,判断其与参考值value的关系对数据集进行拆分 返回两个数据集 ''' split_function = None #value是数值类型 if isinstance (value, int ) or isinstance (value, float ): #定义lambda函数当row[column]>=value时返回true split_function = lambda row:row[column]> = value #value是字符类型 else : #定义lambda函数当row[column]==value时返回true split_function = lambda row:row[column] = = value #将数据集拆分成两个 set1 = [row for row in rows if split_function(row)] set2 = [row for row in rows if not split_function(row)] #返回两个数据集 return (set1,set2) def uniquecounts(rows): '''计算数据集rows中有几种最终结果,计算结果出现次数,返回一个字典 ''' results = {} for row in rows: r = row[ len (row) - 1 ] if r not in results: results[r] = 0 results[r] + = 1 return results def giniimpurity(rows): '''返回rows数据集的基尼不纯度 ''' total = len (rows) counts = uniquecounts(rows) imp = 0 for k1 in counts: p1 = float (counts[k1]) / total for k2 in counts: if k1 = = k2: continue p2 = float (counts[k2]) / total imp + = p1 * p2 return imp def entropy(rows): '''返回rows数据集的熵 ''' from math import log log2 = lambda x:log(x) / log( 2 ) results = uniquecounts(rows) ent = 0.0 for r in results.keys(): p = float (results[r]) / len (rows) ent = ent - p * log2(p) return ent def build_tree(rows,scoref = entropy): '''构造决策树 ''' if len (rows) = = 0 : return DecisionNode() current_score = scoref(rows) # 最佳信息增益 best_gain = 0.0 # best_criteria = None #最佳划分 best_sets = None column_count = len (rows[ 0 ]) - 1 #遍历数据集的列,确定分割顺序 for col in range ( 0 ,column_count): column_values = {} # 构造字典 for row in rows: column_values[row[col]] = 1 for value in column_values.keys(): (set1,set2) = pideset(rows,col,value) p = float ( len (set1)) / len (rows) # 计算信息增益 gain = current_score - p * scoref(set1) - ( 1 - p) * scoref(set2) if gain>best_gain and len (set1)> 0 and len (set2)> 0 : best_gain = gain best_criteria = (col,value) best_sets = (set1,set2) # 如果划分的两个数据集熵小于原数据集,进一步划分它们 if best_gain> 0 : trueBranch = build_tree(best_sets[ 0 ]) falseBranch = build_tree(best_sets[ 1 ]) return DecisionNode(col = best_criteria[ 0 ],value = best_criteria[ 1 ], tb = trueBranch,fb = falseBranch) # 如果划分的两个数据集熵不小于原数据集,停止划分 else : return DecisionNode(results = uniquecounts(rows)) def print_tree(tree,indent = ''): if tree.results! = None : print ( str (tree.results)) else : print ( str (tree.col) + ':' + str (tree.value) + '? ' ) print (indent + 'T->' ,end = '') print_tree(tree.tb,indent + ' ' ) print (indent + 'F->' ,end = '') print_tree(tree.fb,indent + ' ' ) def getwidth(tree): if tree.tb = = None and tree.fb = = None : return 1 return getwidth(tree.tb) + getwidth(tree.fb) def getdepth(tree): if tree.tb = = None and tree.fb = = None : return 0 return max (getdepth(tree.tb),getdepth(tree.fb)) + 1 def drawtree(tree,jpeg = 'tree.jpg' ): w = getwidth(tree) * 100 h = getdepth(tree) * 100 + 120 img = Image.new( 'RGB' ,(w,h),( 255 , 255 , 255 )) draw = ImageDraw.Draw(img) drawnode(draw,tree,w / 2 , 20 ) img.save(jpeg, 'JPEG' ) def drawnode(draw,tree,x,y): if tree.results = = None : # Get the width of each branch w1 = getwidth(tree.fb) * 100 w2 = getwidth(tree.tb) * 100 # Determine the total space required by this node left = x - (w1 + w2) / 2 right = x + (w1 + w2) / 2 # Draw the condition string draw.text((x - 20 ,y - 10 ), str (tree.col) + ':' + str (tree.value),( 0 , 0 , 0 )) # Draw links to the branches draw.line((x,y,left + w1 / 2 ,y + 100 ),fill = ( 255 , 0 , 0 )) draw.line((x,y,right - w2 / 2 ,y + 100 ),fill = ( 255 , 0 , 0 )) # Draw the branch nodes drawnode(draw,tree.fb,left + w1 / 2 ,y + 100 ) drawnode(draw,tree.tb,right - w2 / 2 ,y + 100 ) else : txt = ' \n' .join([ '%s:%d' % v for v in tree.results.items()]) draw.text((x - 20 ,y),txt,( 0 , 0 , 0 )) |
对测试数据进行分类(附带处理缺失数据)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
|
def mdclassify(observation,tree): '''对缺失数据进行分类 args: observation -- 发生信息缺失的数据项 tree -- 训练完成的决策树 返回代表该分类的结果字典 ''' # 判断数据是否到达叶节点 if tree.results! = None : # 已经到达叶节点,返回结果result return tree.results else : # 对数据项的col列进行分析 v = observation[tree.col] # 若col列数据缺失 if v = = None : #对tree的左右子树分别使用mdclassify,tr是左子树得到的结果字典,fr是右子树得到的结果字典 tr,fr = mdclassify(observation,tree.tb),mdclassify(observation,tree.fb) # 分别以结果占总数比例计算得到左右子树的权重 tcount = sum (tr.values()) fcount = sum (fr.values()) tw = float (tcount) / (tcount + fcount) fw = float (fcount) / (tcount + fcount) result = {} # 计算左右子树的加权平均 for k,v in tr.items(): result[k] = v * tw for k,v in fr.items(): # fr的结果k有可能并不在tr中,在result中初始化k if k not in result: result[k] = 0 # fr的结果累加到result中 result[k] + = v * fw return result # col列没有缺失,继续沿决策树分类 else : if isinstance (v, int ) or isinstance (v, float ): if v> = tree.value: branch = tree.tb else : branch = tree.fb else : if v = = tree.value: branch = tree.tb else : branch = tree.fb return mdclassify(observation,branch) tree = build_tree(my_data) print (mdclassify([ 'google' , None , 'yes' , None ],tree)) print (mdclassify([ 'google' , 'France' , None , None ],tree)) |
决策树剪枝
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
|
def prune(tree,mingain): '''对决策树进行剪枝 args: tree -- 决策树 mingain -- 最小信息增益 返回 ''' # 修剪非叶节点 if tree.tb.results = = None : prune(tree.tb,mingain) if tree.fb.results = = None : prune(tree.fb,mingain) #合并两个叶子节点 if tree.tb.results! = None and tree.fb.results! = None : tb,fb = [],[] for v,c in tree.tb.results.items(): tb + = [[v]] * c for v,c in tree.fb.results.items(): fb + = [[v]] * c #计算熵减少情况 delta = entropy(tb + fb) - (entropy(tb) + entropy(fb) / 2 ) #熵的增加量小于mingain,可以合并分支 if delta<mingain: tree.tb,tree.fb = None , None tree.results = uniquecounts(tb + fb) |