1.实现代码:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
|
#include #include #include #include #include #define BUFFSIZE 1024 * 1024 #define min(x, y) ((x) < (y) ? (x) : (y)) pthread_mutex_t lock = PTHREAD_MUTEX_INITIALIZER; struct cycle_buffer { unsigned char *buf; unsigned int size; unsigned int in; unsigned int out; pthread_mutex_t lock; }; static struct cycle_buffer *fifo = NULL; static int init_cycle_buffer( void ) { int size = BUFFSIZE, ret; ret = size & (size - 1); if (ret) return ret; fifo = ( struct cycle_buffer *) malloc ( sizeof ( struct cycle_buffer)); if (!fifo) return -1; memset (fifo, 0, sizeof ( struct cycle_buffer)); fifo->size = size; fifo->in = fifo->out = 0; pthread_mutex_init(&fifo->lock, NULL); fifo->buf = (unsigned char *) malloc (size); if (!fifo->buf) free (fifo); else memset (fifo->buf, 0, size); return 0; } unsigned int fifo_get(unsigned char *buf, unsigned int len) { unsigned int l; len = min(len, fifo->in - fifo->out); l = min(len, fifo->size - (fifo->out & (fifo->size - 1))); memcpy (buf, fifo->buf + (fifo->out & (fifo->size - 1)), l); memcpy (buf + l, fifo->buf, len - l); fifo->out += len; return len; } unsigned int fifo_put(unsigned char *buf, unsigned int len) { unsigned int l; len = min(len, fifo->size - fifo->in + fifo->out); l = min(len, fifo->size - (fifo->in & (fifo->size - 1))); memcpy (fifo->buf + (fifo->in & (fifo->size - 1)), buf, l); memcpy (fifo->buf, buf + l, len - l); fifo->in += len; return len; } static void * thread_read( void *arg) { char buf[1024]; unsigned int n; pthread_detach(pthread_self()); for (;;) { memset (buf, 0, sizeof (buf)); pthread_mutex_lock(&fifo->lock); n = fifo_get(buf, sizeof (buf)); pthread_mutex_unlock(&fifo->lock); write(STDOUT_FILENO, buf, n); } printf ( "nnafter thread_read : %snn" ,buf); return NULL; } static void * thread_write( void *arg) { unsigned char buf[] = "hello world" ; pthread_detach(pthread_self()); for (;;) { pthread_mutex_lock(&fifo->lock); fifo_put(buf, strlen (buf)); pthread_mutex_unlock(&fifo->lock); } return NULL; } int main( void ) { int ret; pthread_t wtid, rtid; ret = init_cycle_buffer(); if (ret == -1) return ret; pthread_create(&wtid, NULL, thread_write, NULL); pthread_create(&rtid, NULL, thread_read, NULL); pthread_exit(NULL); return 0; } |
1.buffer指向存放数据的缓冲区,size是缓冲区的大小,in是写指针下标,out是读指针下标,在len和(fifo->size - fifo->in + fifo->out)之间取一个较小的值赋给len。注意,当(fifo->in == fifo->out+fifo->size)时,表示缓冲区已满,此时得到的较小值一定是0,后面实际写入的字节数也全为0。另一种边界情况是当len很大时(因为len是无符号的,负数对它来说也是一个很大的正数),这一句也能保证len取到一个较小的值,因为fifo->in总是大于等于fifo->out,所以后面的那个表达式的值不会超过fifo->size的大小把上一步决定的要写入的字节数len“切开”,这里又使用了一个技巧。注意:实际分配给fifo->buffer的字节数fifo->size,必须是2的幂,否则这里就会出错。既然fifo->size是2的幂,那么 (fifo->size-1)也就是一个后面几位全为1的数,也就能保证(fifo->in & (fifo->size - 1))总为不超过(fifo->size - 1)的那一部分,和(fifo->in)% (fifo->size - 1)的效果一样。
2.这样后面的代码就不难理解了,它先向fifo->in到缓冲区末端这一块写数据,如果还没写完,在从缓冲区头开始写入剩下的,从而实现了循环缓冲。最后,把写指针后移len个字节,并返回len。
3.从上面可以看出,fifo->in的值可以从0变化到超过fifo->size的数值,fifo->out也如此,但它们的差不会超过fifo->size 。
以上就是环形缓冲区域的C语言实现详解,希望对大家有所帮助,谢谢支持!