服务器之家

服务器之家 > 正文

python绘制中国大陆人口热力图

时间:2021-04-16 00:24     来源/作者:q41816368

这篇文章给出了如何绘制中国人口密度图,但是运行存在一些问题,我在一些地方进行了修改。

本人使用的IDE是anaconda,因此事先在anaconda prompt 中安装Basemap包

?
1
conda install Basemap

新建文档,导入需要的包

?
1
2
3
4
5
6
import matplotlib.pyplot as plt
from mpl_toolkits.basemap import Basemap
from matplotlib.patches import Polygon
from matplotlib.colors import rgb2hex
import numpy as np
import pandas as pd

Basemap中不包括中国省界,需要在下面网站下载中国省界,点击Shapefile下载。

生成中国大陆省界图片。

?
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
plt.figure(figsize=(16,8))
m = Basemap(
 llcrnrlon=77,
 llcrnrlat=14,
 urcrnrlon=140,
 urcrnrlat=51,
 projection='lcc',
 lat_1=33,
 lat_2=45,
 lon_0=100
)
m.drawcountries(linewidth=1.5)
m.drawcoastlines()
 
m.readshapefile('gadm36_CHN_shp/gadm36_CHN_1', 'states', drawbounds=True)

去国家统计局网站下载人口各省,只需保留地区和总人口即可,保存为csv格式并改名为pop.csv。

python绘制中国大陆人口热力图

读取数据,储存为dataframe格式,删去地名之中的空格,并设置地名为dataframe的index。

?
1
2
3
4
5
6
7
8
9
10
df = pd.read_csv('pop.csv')
new_index_list = []
for i in df["地区"]:
 i = i.replace(" ","")
 new_index_list.append(i)
new_index = {"region": new_index_list}
new_index = pd.DataFrame(new_index)
df = pd.concat([df,new_index], axis=1)
df = df.drop(["地区"], axis=1)
df.set_index("region", inplace=True)

将Basemap中的地区与我们下载的csv中的人口数据对应起来,建立字典。注意,Basemap中的地名与csv文件中的地名并不完全一样,需要进行一些处理。

?
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
provinces = m.states_info
statenames=[]
colors = {}
cmap = plt.cm.YlOrRd
vmax = 100000000
vmin = 3000000
 
for each_province in provinces:
 province_name = each_province['NL_NAME_1']
 p = province_name.split('|')
 if len(p) > 1:
  s = p[1]
 else:
  s = p[0]
 s = s[:2]
 if s == '黑龍':
  s = '黑龙江'
 if s == '内蒙':
  s = '内蒙古'
 statenames.append(s)
 pop = df['人口数'][s]
 colors[s] = cmap(np.sqrt((pop - vmin) / (vmax - vmin)))[:3]

最后画出图片即可

?
1
2
3
4
5
6
7
ax = plt.gca()
for nshape, seg in enumerate(m.states):
 color = rgb2hex(colors[statenames[nshape]])
 poly = Polygon(seg, facecolor=color, edgecolor=color)
 ax.add_patch(poly)
 
plt.show()

完整代码如下

?
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
# -*- coding: utf-8 -*-
 
import matplotlib.pyplot as plt
from mpl_toolkits.basemap import Basemap
from matplotlib.patches import Polygon
from matplotlib.colors import rgb2hex
import numpy as np
import pandas as pd
 
plt.figure(figsize=(16,8))
m = Basemap(
 llcrnrlon=77,
 llcrnrlat=14,
 urcrnrlon=140,
 urcrnrlat=51,
 projection='lcc',
 lat_1=33,
 lat_2=45,
 lon_0=100
)
m.drawcountries(linewidth=1.5)
m.drawcoastlines()
 
m.readshapefile('gadm36_CHN_shp/gadm36_CHN_1', 'states', drawbounds=True)
 
df = pd.read_csv('pop.csv')
new_index_list = []
for i in df["地区"]:
 i = i.replace(" ","")
 new_index_list.append(i)
new_index = {"region": new_index_list}
new_index = pd.DataFrame(new_index)
df = pd.concat([df,new_index], axis=1)
df = df.drop(["地区"], axis=1)
df.set_index("region", inplace=True)
 
provinces = m.states_info
statenames=[]
colors = {}
cmap = plt.cm.YlOrRd
vmax = 100000000
vmin = 3000000
 
for each_province in provinces:
 province_name = each_province['NL_NAME_1']
 p = province_name.split('|')
 if len(p) > 1:
  s = p[1]
 else:
  s = p[0]
 s = s[:2]
 if s == '黑龍':
  s = '黑龙江'
 if s == '内蒙':
  s = '内蒙古'
 statenames.append(s)
 pop = df['人口数'][s]
 colors[s] = cmap(np.sqrt((pop - vmin) / (vmax - vmin)))[:3]
 
ax = plt.gca()
for nshape, seg in enumerate(m.states):
 color = rgb2hex(colors[statenames[nshape]])
 poly = Polygon(seg, facecolor=color, edgecolor=color)
 ax.add_patch(poly)
 
plt.show()

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持服务器之家。

原文链接:https://blog.csdn.net/qq_41816368/article/details/80787415

标签:

相关文章

热门资讯

2020微信伤感网名听哭了 让对方看到心疼的伤感网名大全
2020微信伤感网名听哭了 让对方看到心疼的伤感网名大全 2019-12-26
yue是什么意思 网络流行语yue了是什么梗
yue是什么意思 网络流行语yue了是什么梗 2020-10-11
背刺什么意思 网络词语背刺是什么梗
背刺什么意思 网络词语背刺是什么梗 2020-05-22
Intellij idea2020永久破解,亲测可用!!!
Intellij idea2020永久破解,亲测可用!!! 2020-07-29
苹果12mini价格表官网报价 iPhone12mini全版本价格汇总
苹果12mini价格表官网报价 iPhone12mini全版本价格汇总 2020-11-13
返回顶部