Map是STL的一个关联容器,它提供一对一(其中第一个可以称为关键字,每个关键字只能在map中出现一次,第二个可能称为该关键字的值)的数据处理能力,由于这个特性,它完成有可能在我们处理一对一数据的时候,在编程上提供快速通道。这里说下map内部数据的组织,map内部自建一颗红黑树(一种非严格意义上的平衡二叉树),这颗树具有对数据自动排序的功能,所以在map内部所有的数据都是有序的,后边我们会见识到有序的好处。
下面举例说明什么是一对一的数据映射。比如一个班级中,每个学生的学号跟他的姓名就存在着一一映射的关系,这个模型用map可能轻易描述,很明显学号用int描述,姓名用字符串描述(本篇文章中不用char *来描述字符串,而是采用STL中string来描述),下面给出map描述代码:
Map<int, string> mapStudent;
1. map的构造函数
map共提供了6个构造函数,这块涉及到内存分配器这些东西,略过不表,在下面我们将接触到一些map的构造方法,这里要说下的就是,我们通常用如下方法构造一个map:
Map<int, string> mapStudent;
2. 数据的插入
在构造map容器后,我们就可以往里面插入数据了。这里讲三种插入数据的方法:
第一种:用insert函数插入pair数据,下面举例说明(以下代码虽然是随手写的,应该可以在VC和GCC下编译通过,大家可以运行下看什么效果,在VC下请加入这条语句,屏蔽4786警告 #pragma warning (disable:4786) )
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
|
#include <map> #include <string> #include <iostream> Using namespace std; Int main() { Map< int , string> mapStudent; mapStudent.insert(pair< int , string>(1, “student_one”)); mapStudent.insert(pair< int , string>(2, “student_two”)); mapStudent.insert(pair< int , string>(3, “student_three”)); map< int , string>::iterator iter; for (iter = mapStudent.begin(); iter != mapStudent.end(); iter++) { Cout<<iter->first<<” ”<<iter->second<<end; } } |
第二种:用insert函数插入value_type数据,下面举例说明
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
|
#include <map> #include <string> #include <iostream> Using namespace std; Int main() { Map< int , string> mapStudent; mapStudent.insert(map< int , string>::value_type (1, “student_one”)); mapStudent.insert(map< int , string>::value_type (2, “student_two”)); mapStudent.insert(map< int , string>::value_type (3, “student_three”)); map< int , string>::iterator iter; for (iter = mapStudent.begin(); iter != mapStudent.end(); iter++) { Cout<<iter->first<<” ”<<iter->second<<end; } } |
第三种:用数组方式插入数据,下面举例说明
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
|
#include <map> #include <string> #include <iostream> Using namespace std; Int main() { Map< int , string> mapStudent; mapStudent[1] = “student_one”; mapStudent[2] = “student_two”; mapStudent[3] = “student_three”; map< int , string>::iterator iter; for (iter = mapStudent.begin(); iter != mapStudent.end(); iter++) { Cout<<iter->first<<” ”<<iter->second<<end; } } |
以上三种用法,虽然都可以实现数据的插入,但是它们是有区别的,当然了第一种和第二种在效果上是完成一样的,用insert函数插入数据,在数据的插入上涉及到集合的唯一性这个概念,即当map中有这个关键字时,insert操作是插入数据不了的,但是用数组方式就不同了,它可以覆盖以前该关键字对应的值,用程序说明
1
2
3
|
mapStudent.insert(map< int , string>::value_type (1, “student_one”)); mapStudent.insert(map< int , string>::value_type (1, “student_two”)); |
上面这两条语句执行后,map中1这个关键字对应的值是“student_one”,第二条语句并没有生效,那么这就涉及到我们怎么知道insert语句是否插入成功的问题了,可以用pair来获得是否插入成功,程序如下
1
2
3
|
Pair< map <int, string>::iterator, bool> Insert_Pair; Insert_Pair = mapStudent.insert(map< int , string>::value_type (1, “student_one”)); |
我们通过pair的第二个变量来知道是否插入成功,它的第一个变量返回的是一个map的迭代器,如果插入成功的话Insert_Pair.second应该是true的,否则为false。
下面给出完成代码,演示插入成功与否问题
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
|
#include < map > #include < string > #include < iostream > Using namespace std; Int main() { Map< int , string> mapStudent; Pair< map <int, string>::iterator, bool> Insert_Pair; Insert_Pair = mapStudent.insert(pair< int , string>(1, “student_one”)); If(Insert_Pair.second == true) { Cout<<”Insert Successfully”<< endl ; } Else { Cout<<”Insert Failure”<<endl; } Insert_Pair = mapStudent.insert(pair<int, string>(1, “student_two”)); If(Insert_Pair.second == true) { Cout<<”Insert Successfully”<< endl ; } Else { Cout<<”Insert Failure”<<endl; } map<int, string>::iterator iter; for(iter = mapStudent.begin(); iter != mapStudent.end(); iter++) { Cout<< iter- >first<<” ”<< iter- >second<<end; } } |
大家可以用如下程序,看下用数组插入在数据覆盖上的效果
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
|
#include < map > #include < string > #include < iostream > Using namespace std; Int main() { Map< int , string> mapStudent; mapStudent[1] = “student_one”; mapStudent[1] = “student_two”; mapStudent[2] = “student_three”; map< int , string>::iterator iter; for(iter = mapStudent.begin(); iter != mapStudent.end(); iter++) { Cout<< iter- >first<<” ”<< iter- >second<<end; } } |
3. map的大小
在往map里面插入了数据,我们怎么知道当前已经插入了多少数据呢,可以用size函数,用法如下:
Int nSize = mapStudent.size();
4. 数据的遍历
这里也提供三种方法,对map进行遍历
第一种:应用前向迭代器,上面举例程序中到处都是了,略过不表
第二种:应用反相迭代器,下面举例说明,要体会效果,请自个动手运行程序
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
|
#include < string > #include < iostream > Using namespace std; Int main() { Map< int , string> mapStudent; mapStudent.insert(pair< int , string>(1, “student_one”)); mapStudent.insert(pair< int , string>(2, “student_two”)); mapStudent.insert(pair< int , string>(3, “student_three”)); map< int , string>::reverse_iterator iter; for(iter = mapStudent.rbegin(); iter != mapStudent.rend(); iter++) { Cout<< iter- >first<<” ”<< iter- >second<<end; } } |
第三种:用数组方式,程序说明如下
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
|
#include < map > #include < string > #include < iostream > Using namespace std; Int main() { Map< int , string> mapStudent; mapStudent.insert(pair< int , string>(1, “student_one”)); mapStudent.insert(pair< int , string>(2, “student_two”)); mapStudent.insert(pair< int , string>(3, “student_three”)); int nSize = mapStudent.size() //此处有误,应该是 for(int nIndex = 1; nIndex <= nSize; nIndex++) //by rainfish for(int nIndex = 0; nIndex < nSize; nIndex++) { Cout<<mapStudent[nIndex]<<end; } } |
5. 数据的查找(包括判定这个关键字是否在map中出现)
在这里我们将体会,map在数据插入时保证有序的好处。
要判定一个数据(关键字)是否在map中出现的方法比较多,这里标题虽然是数据的查找,在这里将穿插着大量的map基本用法。
这里给出三种数据查找方法
第一种:用count函数来判定关键字是否出现,其缺点是无法定位数据出现位置,由于map的特性,一对一的映射关系,就决定了count函数的返回值只有两个,要么是0,要么是1,出现的情况,当然是返回1了
第二种:用find函数来定位数据出现位置,它返回的一个迭代器,当数据出现时,它返回数据所在位置的迭代器,如果map中没有要查找的数据,它返回的迭代器等于end函数返回的迭代器,程序说明
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
|
#include < map > #include < string > #include < iostream > Using namespace std; Int main() { Map< int , string> mapStudent; mapStudent.insert(pair< int , string>(1, “student_one”)); mapStudent.insert(pair< int , string>(2, “student_two”)); mapStudent.insert(pair< int , string>(3, “student_three”)); map< int , string>::iterator iter; iter = mapStudent.find(1); if(iter != mapStudent.end()) { Cout<<”Find, the value is ”<< iter- >second<<endl; } Else { Cout<<”Do not Find”<<endl; } } |
第三种:这个方法用来判定数据是否出现,是显得笨了点,但是,我打算在这里讲解
Lower_bound函数用法,这个函数用来返回要查找关键字的下界(是一个迭代器)
Upper_bound函数用法,这个函数用来返回要查找关键字的上界(是一个迭代器)
例如:map中已经插入了1,2,3,4的话,如果lower_bound(2)的话,返回的2,而upper-bound(2)的话,返回的就是3
Equal_range函数返回一个pair,pair里面第一个变量是Lower_bound返回的迭代器,pair里面第二个迭代器是Upper_bound返回的迭代器,如果这两个迭代器相等的话,则说明map中不出现这个关键字,程序说明
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
|
#include < map > #include < string > #include < iostream > Using namespace std; Int main() { Map< int , string> mapStudent; mapStudent[1] = “student_one”; mapStudent[3] = “student_three”; mapStudent[5] = “student_five”; map< int , string>::iterator iter; iter = mapStudent.lower_bound(2); { //返回的是下界3的迭代器 Cout<< iter- >second<< endl ; } iter = mapStudent .lower_bound(3); { //返回的是下界3的迭代器 Cout<<iter->second<< endl ; } iter = mapStudent .upper_bound(2); { //返回的是上界3的迭代器 Cout<<iter->second<< endl ; } iter = mapStudent .upper_bound(3); { //返回的是上界5的迭代器 Cout<<iter->second<< endl ; } Pair<map<int, string>::iterator, map< int , string>::iterator> mapPair; mapPair = mapStudent.equal_range(2); if(mapPair.first == mapPair.second) { cout<<”Do not Find”<<endl; } Else { Cout<<”Find”<<endl; } mapPair = mapStudent.equal_range(3); if(mapPair.first == mapPair.second) { cout<<”Do not Find”<<endl; } Else { Cout<<”Find”<<endl; } } |
6. 数据的清空与判空
清空map中的数据可以用clear()函数,判定map中是否有数据可以用empty()函数,它返回true则说明是空map
7. 数据的删除
这里要用到erase函数,它有三个重载了的函数,下面在例子中详细说明它们的用法
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
|
#include < map > #include < string > #include < iostream > Using namespace std; Int main() { Map< int , string> mapStudent; mapStudent.insert(pair< int , string>(1, “student_one”)); mapStudent.insert(pair< int , string>(2, “student_two”)); mapStudent.insert(pair< int , string>(3, “student_three”)); //如果你要演示输出效果,请选择以下的一种,你看到的效果会比较好 //如果要删除1,用迭代器删除 map< int , string>::iterator iter; iter = mapStudent.find(1); mapStudent.erase(iter); //如果要删除1,用关键字删除 Int n = mapStudent.erase(1);//如果删除了会返回1,否则返回0 //用迭代器,成片的删除 //一下代码把整个map清空 mapStudent.earse(mapStudent.begin(), mapStudent.end()); //成片删除要注意的是,也是STL的特性,删除区间是一个前闭后开的集合 //自个加上遍历代码,打印输出吧 } |
8. 其他一些函数用法
这里有swap,key_comp,value_comp,get_allocator等函数,感觉到这些函数在编程用的不是很多,略过不表,有兴趣的话可以自个研究
9. 排序
这里要讲的是一点比较高深的用法了,排序问题,STL中默认是采用小于号来排序的,以上代码在排序上是不存在任何问题的,因为上面的关键字是int型,它本身支持小于号运算,在一些特殊情况,比如关键字是一个结构体,涉及到排序就会出现问题,因为它没有小于号操作,insert等函数在编译的时候过不去,下面给出两个方法解决这个问题
第一种:小于号重载,程序举例
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
|
#include < map > #include < string > Using namespace std; Typedef struct tagStudentInfo { Int nID; String strName; }StudentInfo, *PStudentInfo; //学生信息 Int main() { int nSize; //用学生信息映射分数 map< StudentInfo , int>mapStudent; map< StudentInfo , int>::iterator iter; StudentInfo studentInfo; studentInfo.nID = 1; studentInfo.strName = “student_one”; mapStudent.insert(pair< StudentInfo , int>(studentInfo, 90)); studentInfo.nID = 2; studentInfo.strName = “student_two”; mapStudent.insert(pair< StudentInfo , int>(studentInfo, 80)); for (iter=mapStudent.begin(); iter!=mapStudent.end(); iter++) cout<< iter- >first.nID<< endl <<iter->first.strName<< endl <<iter->second<<endl; } |
以上程序是无法编译通过的,只要重载小于号,就OK了,如下:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
|
Typedef struct tagStudentInfo { Int nID; String strName; Bool operator < (tagStudentInfo const& _A) const { //这个函数指定排序策略,按nID排序,如果nID相等的话,按strName排序 If(nID < _A.nID) return true; If(nID == _A.nID) return strName.compare(_A.strName) < 0; Return false; } }StudentInfo, *PStudentInfo; //学生信息 |
第二种:仿函数的应用,这个时候结构体中没有直接的小于号重载,程序说明
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
|
#include < map > #include < string > Using namespace std; Typedef struct tagStudentInfo { Int nID; String strName; }StudentInfo, *PStudentInfo; //学生信息 Classs sort { Public: Bool operator() (StudentInfo const &_A, StudentInfo const &_B) const { If(_A.nID < _B.nID ) return true; If(_A.nID == _B.nID) return _A.strName.compare(_B.strName) < 0; Return false; } }; Int main() { //用学生信息映射分数 Map<StudentInfo, int, sort>mapStudent; StudentInfo studentInfo; studentInfo.nID = 1; studentInfo.strName = “student_one”; mapStudent.insert(pair< StudentInfo , int>(studentInfo, 90)); studentInfo.nID = 2; studentInfo.strName = “student_two”; mapStudent.insert(pair< StudentInfo , int>(studentInfo, 80)); } |
10. 另外
由于STL是一个统一的整体,map的很多用法都和STL中其它的东西结合在一起,比如在排序上,这里默认用的是小于号,即less<>,如果要从大到小排序呢,这里涉及到的东西很多,在此无法一一加以说明。
还要说明的是,map中由于它内部有序,由红黑树保证,因此很多函数执行的时间复杂度都是log2N的,如果用map函数可以实现的功能,而STL Algorithm也可以完成该功能,建议用map自带函数,效率高一些。
下面说下,map在空间上的特性,否则,估计你用起来会有时候表现的比较郁闷,由于map的每个数据对应红黑树上的一个节点,这个节点在不保存你的数据时,是占用16个字节的,一个父节点指针,左右孩子指针,还有一个枚举值(标示红黑的,相当于平衡二叉树中的平衡因子),我想大家应该知道,这些地方很费内存了吧,不说了……