1、遇到的问题:numpy版本
im_data = dataset.ReadAsArray(0,0,im_width,im_height)#获取数据 这句报错
升级numpy:pip install -U numpy 但是提示已经是最新版本
解决:卸载numpy 重新安装
2.直接从压缩包中读取tiff图像
参考:http://gdal.org/gdal_virtual_file_systems.html#gdal_virtual_file_systems_vsizip
当前情况是2层压缩: /'/vsitar/C:/Users/summer/Desktop/a_PAN1.tiff'
3.读tiff
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
|
def readTif(fileName): merge_img = 0 driver.Register() dataset = gdal. Open (fileName) if dataset = = None : print (fileName + "掩膜失败,文件无法打开" ) return im_width = dataset.RasterXSize #栅格矩阵的列数 print ( 'im_width:' , im_width) im_height = dataset.RasterYSize #栅格矩阵的行数 print ( 'im_height:' , im_height) im_bands = dataset.RasterCount #波段数 im_geotrans = dataset.GetGeoTransform() #获取仿射矩阵信息 im_proj = dataset.GetProjection() #获取投影信息 if im_bands = = 1 : band = dataset.GetRasterBand( 1 ) im_data = dataset.ReadAsArray( 0 , 0 ,im_width,im_height) #获取数据 cdata = im_data.astype(np.uint8) merge_img = cv2.merge([cdata,cdata,cdata]) cv2.imwrite( 'C:/Users/summer/Desktop/a.jpg' , merge_img) # elif im_bands = = 4 : # # im_data = dataset.ReadAsArray(0,0,im_width,im_height)#获取数据 # # im_blueBand = im_data[0,0:im_width,0:im_height] #获取蓝波段 # # im_greenBand = im_data[1,0:im_width,0:im_height] #获取绿波段 # # im_redBand = im_data[2,0:im_width,0:im_height] #获取红波段 # # # im_nirBand = im_data[3,0:im_width,0:im_height] #获取近红外波段 # # merge_img=cv2.merge([im_redBand,im_greenBand,im_blueBand]) # # zeros = np.zeros([im_height,im_width],dtype = "uint8") # # data1 = im_redBand.ReadAsArray # band1=dataset.GetRasterBand(1) # band2=dataset.GetRasterBand(2) # band3=dataset.GetRasterBand(3) # band4=dataset.GetRasterBand(4) data1 = band1.ReadAsArray( 0 , 0 ,im_width,im_height).astype(np.uint16) #r #获取数据 data2 = band2.ReadAsArray( 0 , 0 ,im_width,im_height).astype(np.uint16) #g #获取数据 data3 = band3.ReadAsArray( 0 , 0 ,im_width,im_height).astype(np.uint16) #b #获取数据 data4 = band4.ReadAsArray( 0 , 0 ,im_width,im_height).astype(np.uint16) #R #获取数据 # print(data1[1][45]) # output1= cv2.convertScaleAbs(data1, alpha=(255.0/65535.0)) # print(output1[1][45]) # output2= cv2.convertScaleAbs(data2, alpha=(255.0/65535.0)) # output3= cv2.convertScaleAbs(data3, alpha=(255.0/65535.0)) merge_img1 = cv2.merge([output3,output2,output1]) #B G R cv2.imwrite( 'C:/Users/summer/Desktop/merge_img1.jpg' , merge_img1) |
4.图像裁剪:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
|
import cv2 import numpy as np import os tiff_file = './try_img/2.tiff' save_folder = './try_img_re/' if not os.path.exists(save_folder): os.makedirs(save_folder) tif_img = cv2.imread(tiff_file) width, height, channel = tif_img.shape # print height, width, channel : 6908 7300 3 threshold = 1000 overlap = 100 step = threshold - overlap x_num = width / step + 1 y_num = height / step + 1 print x_num, y_num N = 0 yj = 0 for xi in range (x_num): for yj in range (y_num): # print xi if yj < = y_num: print yj x = step * xi y = step * yj wi = min (width,x + threshold) hi = min (height,y + threshold) # print wi , hi if wi - x < 1000 and hi - y < 1000 : im_block = tif_img[wi - 1000 :wi, hi - 1000 :hi] elif wi - x > 1000 and hi - y < 1000 : im_block = tif_img[x:wi, hi - 1000 :hi] elif wi - x < 1000 and hi - y > 1000 : im_block = tif_img[wi - 1000 :wi, y:hi] else : im_block = tif_img[x:wi,y:hi] cv2.imwrite(save_folder + 'try' + str (N) + '.jpg' , im_block) N + = 1 |
以上这篇对Python3+gdal 读取tiff格式数据的实例讲解就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持服务器之家。
原文链接:https://blog.csdn.net/summermaoz/article/details/78346929