这些对文本的操作经常用到, 那我就总结一下。 陆续补充。。。
操作:
strip_html(cls, text) 去除html标签
separate_words(cls, text, min_lenth=3) 文本提取
get_words_frequency(cls, words_list) 获取词频
源码:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
|
class DocProcess( object ): @classmethod def strip_html( cls , text): """ Delete html tags in text. text is String """ new_text = " " is_html = False for character in text: if character = = "<" : is_html = True elif character = = ">" : is_html = False new_text + = " " elif is_html is False : new_text + = character return new_text @classmethod def separate_words( cls , text, min_lenth = 3 ): """ Separate text into words in list. """ splitter = re. compile ( "\\W+" ) return [s.lower() for s in splitter.split(text) if len (s) > min_lenth] @classmethod def get_words_frequency( cls , words_list): """ Get frequency of words in words_list. return a dict. """ num_words = {} for word in words_list: num_words[word] = num_words.get(word, 0 ) + 1 return num_words |
以上这篇python 文本单词提取和词频统计的实例就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持服务器之家。
原文链接:https://blog.csdn.net/autoliuweijie/article/details/50687419