本文实例讲述了Python实现的线性回归算法。分享给大家供大家参考,具体如下:
用python实现线性回归
Using Python to Implement Line Regression Algorithm
小菜鸟记录学习过程
代码:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
|
#encoding:utf-8 """ Author: njulpy Version: 1.0 Data: 2018/04/09 Project: Using Python to Implement LineRegression Algorithm """ import numpy as np import pandas as pd from numpy.linalg import inv from numpy import dot from sklearn.model_selection import train_test_split import matplotlib.pyplot as plt from sklearn import linear_model # 最小二乘法 def lms(x_train,y_train,x_test): theta_n = dot(dot(inv(dot(x_train.T, x_train)), x_train.T), y_train) # theta = (X'X)^(-1)X'Y #print(theta_n) y_pre = dot(x_test,theta_n) mse = np.average((y_test - y_pre) * * 2 ) #print(len(y_pre)) #print(mse) return theta_n,y_pre,mse #梯度下降算法 def train(x_train, y_train, num, alpha,m, n): beta = np.ones(n) for i in range (num): h = np.dot(x_train, beta) # 计算预测值 error = h - y_train.T # 计算预测值与训练集的差值 delt = 2 * alpha * np.dot(error, x_train) / m # 计算参数的梯度变化值 beta = beta - delt #print('error', error) return beta if __name__ = = "__main__" : iris = pd.read_csv( 'iris.csv' ) iris[ 'Bias' ] = float ( 1 ) x = iris[[ 'Sepal.Width' , 'Petal.Length' , 'Petal.Width' , 'Bias' ]] y = iris[ 'Sepal.Length' ] x_train, x_test, y_train, y_test = train_test_split(x, y, test_size = 0.2 , random_state = 5 ) t = np.arange( len (x_test)) m, n = np.shape(x_train) # Leastsquare theta_n, y_pre, mse = lms(x_train, y_train, x_test) # plt.plot(t, y_test, label='Test') # plt.plot(t, y_pre, label='Predict') # plt.show() # GradientDescent beta = train(x_train, y_train, 1000 , 0.001 , m, n) y_predict = np.dot(x_test, beta.T) # plt.plot(t, y_predict) # plt.plot(t, y_test) # plt.show() # sklearn regr = linear_model.LinearRegression() regr.fit(x_train, y_train) y_p = regr.predict(x_test) print (regr.coef_,theta_n,beta) l1, = plt.plot(t, y_predict) l2, = plt.plot(t, y_p) l3, = plt.plot(t, y_pre) l4, = plt.plot(t, y_test) plt.legend(handles = [l1, l2,l3,l4 ], labels = [ 'GradientDescent' , 'sklearn' , 'Leastsquare' , 'True' ], loc = 'best' ) plt.show() |
输出结果
sklearn: [ 0.65368836 0.70955523 -0.54193454 0. ]
LeastSquare: [ 0.65368836 0.70955523 -0.54193454 1.84603897]
GradientDescent: [ 0.98359285 0.29325906 0.60084232 1.006859 ]
附:上述示例中的iris.csv文件点击此处本站下载。
希望本文所述对大家Python程序设计有所帮助。
原文链接:https://blog.csdn.net/njulpy/article/details/79899740