服务器之家

服务器之家 > 正文

python实现蒙特卡罗方法教程

时间:2021-05-23 11:02     来源/作者:脚本之家

蒙特卡罗方法是一种统计模拟方法,由冯·诺依曼和乌拉姆提出,在大量的随机数下,根据概率估计结果,随机数据越多,获得的结果越精确。下面我们将用python实现蒙特卡罗方法。

1.首先我们做一个简单的圆周率的近似计算,在这个过程中我们要用到随机数,因此需要先使用import numpy as np导入numpy库。

2.代码实现:

?
1
2
3
4
5
6
7
8
9
10
11
12
13
import numpy as np
 
total = 8000000
count = 0
 
for i in range(total):
 x = np.random.rand()
 y = np.random.rand()
 dis = (x**2+y**2)**0.5
 if dis <= 1:
  count = count+1
pi = 4*count/total
print(pi)

3.在上面的程序中我们用8000000个随机数进行投放,这样得到的结果会更精确一些,运行程序需要一定的时间,最终得到的结果如下

python实现蒙特卡罗方法教程

4.下面我们进行一项简单的应用,下图为我在画图工具中随便画的一个图,我们可以用蒙特卡罗方法来估算图中黑色部分的面积。

python实现蒙特卡罗方法教程

5.上面的图形是不规则的,我们只需知道在投放大量随机数的情况下,随机数在黑色部分出现的概率,再用总面积相乘即可估算黑色部分的面积。我们知道,黑色的rgb编码为(0,0,0),所以需要统计rgb编码为(0,0,0)时随机数的投放概率即可。

6.代码实现:

?
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
from pil import image
import numpy as np
 
im = image.open("c:/users/21974/desktop/handwrite2.png")
total = 9000000
count = 0
defin = 0
width = im.size[0]
height = im.size[1]
 
for i in range(total): #用蒙特卡罗方法获得估计值
 x = np.random.randint(0, width-1)
 y = np.random.randint(0, height-1)
 k = im.getpixel((x, y))
 if k[0]+k[1]+k[2] == 0:
  count += 1
print(int(width*height*count/total))
 
for i in range(width): #用遍历获得准确值
 for j in range(height):
  k = im.getpixel((i, j))
  if k[0] + k[1] + k[2] == 0:
   defin += 1
print(defin)

上面的代码可分为两部分,第一个for后面是用蒙特卡罗方法获得的面积的估计值,第二个for后面是用遍历所有像素点的方法获得的面积的精确值,获得两个输出后进行对比。

python实现蒙特卡罗方法教程

我们在上面的程序中采用了9000000个随机数,可以看出两个输出结果相差并不大。

标签:

相关文章

热门资讯

2020微信伤感网名听哭了 让对方看到心疼的伤感网名大全
2020微信伤感网名听哭了 让对方看到心疼的伤感网名大全 2019-12-26
yue是什么意思 网络流行语yue了是什么梗
yue是什么意思 网络流行语yue了是什么梗 2020-10-11
背刺什么意思 网络词语背刺是什么梗
背刺什么意思 网络词语背刺是什么梗 2020-05-22
苹果12mini价格表官网报价 iPhone12mini全版本价格汇总
苹果12mini价格表官网报价 iPhone12mini全版本价格汇总 2020-11-13
2021德云社封箱演出完整版 2021年德云社封箱演出在线看
2021德云社封箱演出完整版 2021年德云社封箱演出在线看 2021-03-15
返回顶部