本文实例为大家分享了python实现烟花小程序的具体代码,供大家参考,具体内容如下
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
|
''' FIREWORKS SIMULATION WITH TKINTER * self - containing code * to run: simply type python simple.py in your console * compatible with both Python 2 and Python 3 * Dependencies: tkinter, Pillow (only for background image) * The design is based on high school physics, with some small twists only for aesthetics purpose import tkinter as tk #from tkinter import messagebox #from tkinter import PhotoImage from PIL import Image, ImageTk from time import time, sleep from random import choice, uniform, randint from math import sin, cos, radians # gravity, act as our constant g, you can experiment by changing it GRAVITY = 0.05 # list of color, can choose randomly or use as a queue (FIFO) colors = [ 'red' , 'blue' , 'yellow' , 'white' , 'green' , 'orange' , 'purple' , 'seagreen' , 'indigo' , 'cornflowerblue' ] Generic class for particles particles are emitted almost randomly on the sky, forming a round of circle (a star) before falling and getting removed from canvas Attributes: - id : identifier of a particular particle in a star - x, y: x,y - coordinate of a star (point of explosion) - vx, vy: speed of particle in x, y coordinate - total: total number of particle in a star - age: how long has the particle last on canvas - color: self - explantory - cv: canvas - lifespan: how long a particle will last on canvas class part: def __init__( self , cv, idx, total, explosion_speed, x = 0. , y = 0. , vx = 0. , vy = 0. , size = 2. , color = 'red' , lifespan = 2 , * * kwargs): self . id = idx self .x = x self .y = y self .initial_speed = explosion_speed self .vx = vx self .vy = vy self .total = total self .age = 0 self .color = color self .cv = cv self .cid = self .cv.create_oval( x - size, y - size, x + size, y + size, fill = self .color) self .lifespan = lifespan def update( self , dt): self .age + = dt # particle expansions if self .alive() and self .expand(): move_x = cos(radians( self . id * 360 / self .total)) * self .initial_speed move_y = sin(radians( self . id * 360 / self .total)) * self .initial_speed self .cv.move( self .cid, move_x, move_y) self .vx = move_x / ( float (dt) * 1000 ) # falling down in projectile motion elif self .alive(): move_x = cos(radians( self . id * 360 / self .total)) # we technically don't need to update x, y because move will do the job self .cv.move( self .cid, self .vx + move_x, self .vy + GRAVITY * dt) self .vy + = GRAVITY * dt # remove article if it is over the lifespan elif self .cid is not None : cv.delete( self .cid) self .cid = None # define time frame for expansion def expand ( self ): return self .age < = 1.2 # check if particle is still alive in lifespan def alive( self ): return self .age < = self .lifespan Firework simulation loop: Recursively call to repeatedly emit new fireworks on canvas a list of list ( list of stars, each of which is a list of particles) is created and drawn on canvas at every call, via update protocol inside each 'part' object def simulate(cv): t = time() explode_points = [] wait_time = randint( 10 , 100 ) numb_explode = randint( 6 , 10 ) # create list of list of all particles in all simultaneous explosion for point in range (numb_explode): objects = [] x_cordi = randint( 50 , 550 ) y_cordi = randint( 50 , 150 ) speed = uniform ( 0.5 , 1.5 ) size = uniform ( 0.5 , 3 ) color = choice(colors) explosion_speed = uniform( 0.2 , 1 ) total_particles = randint( 10 , 50 ) for i in range ( 1 ,total_particles): r = part(cv, idx = i, total = total_particles, explosion_speed = explosion_speed, x = x_cordi, y = y_cordi, vx = speed, vy = speed, color = color, size = size, lifespan = uniform( 0.6 , 1.75 )) objects.append(r) explode_points.append(objects) total_time = . 0 # keeps undate within a timeframe of 1.8 second while total_time < 1.8 : sleep( 0.01 ) tnew = time() t, dt = tnew, tnew - t for point in explode_points: for item in point: item.update(dt) cv.update() total_time + = dt # recursive call to continue adding new explosion on canvas root.after(wait_time, simulate, cv) def close( * ignore): """Stops simulation loop and closes the window.""" global root root.quit() if __name__ = = '__main__' : root = tk.Tk() cv = tk.Canvas(root, height = 600 , width = 600 ) # use a nice background image image = Image. open ( "./image1.jpg" ) #背景照片路径自行选择,可以选择酷炫一点的,看起来效果会#更好 photo = ImageTk.PhotoImage(image) cv.create_image( 0 , 0 , image = photo, anchor = 'nw' ) cv.pack() root.protocol( "WM_DELETE_WINDOW" , close) root.after( 100 , simulate, cv) root.mainloop() |
注意:这里需要安装tkinter,安装过程:
step1:
>>> import _tkinter # with underscore, and lowercase 't'
step2:
>>> import Tkinter # no underscore, uppercase 'T' for versions prior to V3.0
>>> import tkinter # no underscore, lowercase 't' for V3.0 and later
step3:
>>> Tkinter._test() # note underscore in _test and uppercase 'T' for versions prior to V3.0
>>> tkinter._test() # note underscore in _test and lowercase 'T' for V3.0 and later
然后就可以运行了,在代码中有一个背景照片部分,路径可自行选择!我这里就不修改了。
以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持服务器之家。
原文链接:https://blog.csdn.net/Dachao0707/article/details/82955710