本文实例总结了Python中numpy模块常见用法。分享给大家供大家参考,具体如下:
1
|
import numpy as np |
1
2
3
4
5
6
|
arr = np.array([[ 1 , 2 , 3 ], [ 2 , 3 , 4 ]]) print (arr) print ( type (arr)) print ( 'number of dim:' , arr.ndim) print ( 'shape:' , arr.shape) print ( 'size:' , arr.size) |
[[1 2 3]
[2 3 4]]
number of dim: 2
shape: (2, 3)
size: 6
1
2
3
4
5
6
|
a32 = np.array([ 1 , 23 , 456 ], dtype = np. int ) print (a32.dtype) a64 = np.array([ 1 , 23 , 456 ], dtype = np.int64) print (a64.dtype) f64 = np.array([ 1 , 23 , 456 ], dtype = np. float ) print (f64.dtype) |
int32
int64
float64
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
|
z = np.zeros(( 3 , 4 )) print (z) print (z.dtype) print () one = np.ones(( 3 , 4 ), dtype = int ) print (one) print (one.dtype) print () emt = np.empty(( 3 , 4 ), dtype = int ) print (emt) print (emt.dtype) print () ran = np.arange( 12 ).reshape(( 3 , 4 )) print (ran) print (ran.dtype) print () li = np.linspace( 1 , 10 , 6 ).reshape( 2 , 3 ) print (li) print (li.dtype) |
[[0. 0. 0. 0.]
[0. 0. 0. 0.]
[0. 0. 0. 0.]]
float64
[[1 1 1 1]
[1 1 1 1]
[1 1 1 1]]
int32
[[ 0 1072693248 1717986918 1074161254]
[ 1717986918 1074947686 -1717986918 1075419545]
[ 1717986918 1075865190 0 1076101120]]
int32
[[ 0 1 2 3]
[ 4 5 6 7]
[ 8 9 10 11]]
int32
[[ 1. 2.8 4.6]
[ 6.4 8.2 10. ]]
float64
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
|
a = np.array([ 10 , 20 , 30 , 40 ]) b = np.arange( 4 ) print (a) print (b) print () print (a + b) print (a - b) print (a * b) print () print (a * * b) print () print ( 10 * np.sin(a)) print () print (b< 3 ) print () |
[10 20 30 40]
[0 1 2 3]
[10 21 32 43]
[10 19 28 37]
[ 0 20 60 120]
[ 1 20 900 64000]
[-5.44021111 9.12945251 -9.88031624 7.4511316 ]
[ True True True False]
1
2
3
4
5
6
7
8
9
|
a = np.array([[ 1 , 2 ], [ 3 , 4 ]]) b = np.arange( 4 ).reshape( 2 , 2 ) print (a) print (b) print () print (a * b) print (np.dot(a, b)) #矩阵乘法,或下面: print (a.dot(b)) print () |
[[1 2]
[3 4]]
[[0 1]
[2 3]]
[[ 0 2]
[ 6 12]]
[[ 4 7]
[ 8 15]]
[[ 4 7]
[ 8 15]]
1
2
3
4
5
6
7
8
9
|
a = np.random.random(( 2 , 4 )) print (a) print (np. sum (a)) print (np. min (a)) print (np. max (a)) print () print (np. sum (a, axis = 1 )) #返回每一行的和。 axis=1代表行 print (np. min (a, axis = 0 )) #返回每一列的最小值。 axis=0代表列 print (np.mean(a, axis = 1 )) #返回每一行的平均值 |
[[0.04456704 0.99481679 0.96599561 0.48590905]
[0.56512852 0.62887714 0.78829115 0.32759434]]
4.8011796551183945
0.04456704487406293
0.9948167913629338
[2.4912885 2.30989116]
[0.04456704 0.62887714 0.78829115 0.32759434]
[0.62282212 0.57747279]
1
2
3
4
5
6
7
8
9
10
|
A = np.arange( 2 , 14 ).reshape( 3 , 4 ) print (A) print (np.argmin(A)) #最小索引 print (np.argmax(A)) #最大索引 print () print (A.mean()) print (np.median(A)) #中位数 print (A.cumsum()) #累加值 print (np.diff(A)) #相邻差值 print () |
[[ 2 3 4 5]
[ 6 7 8 9]
[10 11 12 13]]
0
11
7.5
7.5
[ 2 5 9 14 20 27 35 44 54 65 77 90]
[[1 1 1]
[1 1 1]
[1 1 1]]
(array([0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2], dtype=int32), array([0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, 3], dtype=int32))
1
2
3
4
5
6
7
8
9
10
11
12
13
14
|
A = np.array([[ 1 , 0 ], [ 0 , 3 ]]) print (A) print (A.nonzero()) #分别输出非零元素的行和列值 print (np.sort(A)) #逐行排序后的矩阵 print (np.sort(A, axis = 0 )) #逐列排序的矩阵 print (np.sort(A).nonzero()) print () B = np.arange( 14 , 2 , - 1 ).reshape( 3 , 4 ) print (B) print (B.transpose()) #转置 print ((B.T).dot(B)) #转置 print () print (np.clip(B, 5 , 9 )) #B中将范围限定,大于9的数都为9,小于5的都为5,之间的数不变 print () |
[[1 0]
[0 3]]
(array([0, 1], dtype=int32), array([0, 1], dtype=int32))
[[0 1]
[0 3]]
[[0 0]
[1 3]]
(array([0, 1], dtype=int32), array([1, 1], dtype=int32))
[[14 13 12 11]
[10 9 8 7]
[ 6 5 4 3]]
[[14 10 6]
[13 9 5]
[12 8 4]
[11 7 3]]
[[332 302 272 242]
[302 275 248 221]
[272 248 224 200]
[242 221 200 179]]
[[9 9 9 9]
[9 9 8 7]
[6 5 5 5]]
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
|
A = np.arange( 3 , 7 ) print (A) print (A[ 2 ]) print () B = np.arange( 3 , 15 ).reshape( 3 , 4 ) print (B) print (B[ 2 ]) print (B[ 2 ][ 1 ]) print (B[ 2 , 1 ]) print () print (B[ 2 , 2 :]) print (B[ 1 :, 2 :]) print () for row in B: print (row) print () for col in B.T: print (col) print () print (B.flatten()) for elm in B.flat: print (elm) |
[3 4 5 6]
5
[[ 3 4 5 6]
[ 7 8 9 10]
[11 12 13 14]]
[11 12 13 14]
12
12
[13 14]
[[ 9 10]
[13 14]]
[3 4 5 6]
[ 7 8 9 10]
[11 12 13 14]
[ 3 7 11]
[ 4 8 12]
[ 5 9 13]
[ 6 10 14]
[ 3 4 5 6 7 8 9 10 11 12 13 14]
3
4
5
6
7
8
9
10
11
12
13
14
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
|
#矩阵合并 A = np.array([ 1 , 1 , 1 ]) B = np.array([ 2 , 2 , 2 ]) C = np.vstack((A, B, A, B)) print (C) print (A.shape, (A.T).shape) print (C.shape) print () D = np.hstack((A, B)) print (D) print () print (A[np.newaxis, :]) print (A[:, np.newaxis]) print (np.hstack((A[:, np.newaxis], B[:, np.newaxis]))) print () print (np.stack((A,B), axis = 0 )) print (np.stack((A,B), axis = 1 )) #print(np.concatenate((A,B,B,A), axis=0)) #print(np.concatenate((A,B,B,A), axis=1)) |
[[1 1 1]
[2 2 2]
[1 1 1]
[2 2 2]]
(3,) (3,)
(4, 3)
[1 1 1 2 2 2]
[[1 1 1]]
[[1]
[1]
[1]]
[[1 2]
[1 2]
[1 2]]
[[1 1 1]
[2 2 2]]
[[1 2]
[1 2]
[1 2]]
1
2
3
4
5
6
7
8
9
|
A = np.arange( 12 ).reshape( 3 , 4 ) print (A) print (np.split(A, 2 , axis = 1 )) print (np.split(A, 3 , axis = 0 )) print () print (np.array_split(A, 3 , axis = 1 )) #不等分割 print () print (np.hsplit(A, 2 )) print (np.vsplit(A, 1 )) |
[[ 0 1 2 3]
[ 4 5 6 7]
[ 8 9 10 11]]
[array([[0, 1],
[4, 5],
[8, 9]]), array([[ 2, 3],
[ 6, 7],
[10, 11]])]
[array([[0, 1, 2, 3]]), array([[4, 5, 6, 7]]), array([[ 8, 9, 10, 11]])]
[array([[0, 1],
[4, 5],
[8, 9]]), array([[ 2],
[ 6],
[10]]), array([[ 3],
[ 7],
[11]])]
[array([[0, 1],
[4, 5],
[8, 9]]), array([[ 2, 3],
[ 6, 7],
[10, 11]])]
[array([[ 0, 1, 2, 3],
[ 4, 5, 6, 7],
[ 8, 9, 10, 11]])]
1
2
3
4
5
6
7
8
9
|
A = np.arange( 4 ) B = A C = B D = A.copy() print (A, B, C, D) A[ 0 ] = 5 print (A, B, C, D) print ( id (A), id (B), id (C), id (D)) #id返回指针的值(内存地址) print () |
[0 1 2 3] [0 1 2 3] [0 1 2 3] [0 1 2 3]
[5 1 2 3] [5 1 2 3] [5 1 2 3] [0 1 2 3]
172730832 172730832 172730832 172730792
希望本文所述对大家Python程序设计有所帮助。
原文链接:https://blog.csdn.net/xuejianbest/article/details/85159270