本文实例为大家分享了python dlib人脸识别的具体代码,供大家参考,具体内容如下
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
|
import matplotlib.pyplot as plt import dlib import numpy as np import glob import re #正脸检测器 detector = dlib.get_frontal_face_detector() #脸部关键形态检测器 sp = dlib.shape_predictor(r "d:\lb\javascript\shape_predictor_68_face_landmarks.dat" ) #人脸识别模型 facerec = dlib.face_recognition_model_v1(r "d:\lb\javascript\dlib_face_recognition_resnet_model_v1.dat" ) #候选人脸部描述向量集 descriptors = [] photo_locations = [] for photo in glob.glob(r 'd:\lb\javascript\faces\*.jpg' ): photo_locations.append(photo) img = plt.imread(photo) img = np.array(img) #开始检测人脸 dets = detector(img, 1 ) for k,d in enumerate (dets): #检测每张照片中人脸的特征 shape = sp(img,d) face_descriptor = facerec.compute_face_descriptor(img,shape) v = np.array(face_descriptor) descriptors.append(v) #输入的待识别的人脸处理方法相同 img = plt.imread(r 'd:\test_photo10.jpg' ) img = np.array(img) dets = detector(img, 1 ) #计算输入人脸和已有人脸之间的差异程度(比如用欧式距离来衡量) differences = [] for k,d in enumerate (dets): shape = sp(img,d) face_descriptor = facerec.compute_face_descriptor(img,shape) d_test = np.array(face_descriptor) #计算输入人脸和所有已有人脸描述向量的欧氏距离 for i in descriptors: distance = np.linalg.norm(i - d_test) differences.append(distance) #按欧式距离排序 欧式距离最小的就是匹配的人脸 candidate_count = len (photo_locations) candidates_dict = dict ( zip (photo_locations,differences)) candidates_dict_sorted = sorted (candidates_dict.items(),key = lambda x:x[ 1 ]) #matplotlib要正确显示中文需要设置 plt.rcparams[ 'font.family' ] = [ 'sans-serif' ] plt.rcparams[ 'font.sans-serif' ] = [ 'simhei' ] plt.rcparams[ 'figure.figsize' ] = ( 20.0 , 70.0 ) ax = plt.subplot(candidate_count + 1 , 4 , 1 ) ax.set_title( "输入的人脸" ) ax.imshow(img) for i,(photo,distance) in enumerate (candidates_dict_sorted): img = plt.imread(photo) face_name = "" photo_name = re.search(r '([^\\]*)\.jpg$' ,photo) if photo_name: face_name = photo_name[ 1 ] ax = plt.subplot(candidate_count + 1 , 4 ,i + 2 ) ax.set_xticks([]) ax.set_yticks([]) ax.spines[ 'top' ].set_visible(false) ax.spines[ 'right' ].set_visible(false) ax.spines[ 'bottom' ].set_visible(false) ax.spines[ 'left' ].set_visible(false) if i = = 0 : ax.set_title( "最匹配的人脸\n\n" + face_name + "\n\n差异度:" + str (distance)) else : ax.set_title(face_name + "\n\n差异度:" + str (distance)) ax.imshow(img) plt.show() |
以上所述是小编给大家介绍的python dlib人脸识别详解整合,希望对大家有所帮助,如果大家有任何疑问请给我留言,小编会及时回复大家的。在此也非常感谢大家对服务器之家网站的支持!
原文链接:https://blog.csdn.net/MAILLIBIN/article/details/88979691