在matlab中,存在执行直接得函数来添加高斯噪声和椒盐噪声。Python-OpenCV中虽然不存在直接得函数,但是很容易使用相关的函数来实现。
代码:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
|
import numpy as np import random import cv2 def sp_noise(image,prob): ''' 添加椒盐噪声 prob:噪声比例 ''' output = np.zeros(image.shape,np.uint8) thres = 1 - prob for i in range (image.shape[ 0 ]): for j in range (image.shape[ 1 ]): rdn = random.random() if rdn < prob: output[i][j] = 0 elif rdn > thres: output[i][j] = 255 else : output[i][j] = image[i][j] return output def gasuss_noise(image, mean = 0 , var = 0.001 ): ''' 添加高斯噪声 mean : 均值 var : 方差 ''' image = np.array(image / 255 , dtype = float ) noise = np.random.normal(mean, var * * 0.5 , image.shape) out = image + noise if out. min () < 0 : low_clip = - 1. else : low_clip = 0. out = np.clip(out, low_clip, 1.0 ) out = np.uint8(out * 255 ) #cv.imshow("gasuss", out) return out |
可见,只要我们得到满足某个分布的多维数组,就能作为噪声添加到图片中。
例如:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
|
import cv2 import numpy as np >>> im = np.empty(( 5 , 5 ), np.uint8) # needs preallocated input image >>> im array([[ 248 , 168 , 58 , 2 , 1 ], # uninitialized memory counts as random, too ? fun ;) [ 0 , 100 , 2 , 0 , 101 ], [ 0 , 0 , 106 , 2 , 0 ], [ 131 , 2 , 0 , 90 , 3 ], [ 0 , 100 , 1 , 0 , 83 ]], dtype = uint8) >>> im = np.zeros(( 5 , 5 ), np.uint8) # seriously now. >>> im array([[ 0 , 0 , 0 , 0 , 0 ], [ 0 , 0 , 0 , 0 , 0 ], [ 0 , 0 , 0 , 0 , 0 ], [ 0 , 0 , 0 , 0 , 0 ], [ 0 , 0 , 0 , 0 , 0 ]], dtype = uint8) >>> cv2.randn(im,( 0 ),( 99 )) # normal array([[ 0 , 76 , 0 , 129 , 0 ], [ 0 , 0 , 0 , 188 , 27 ], [ 0 , 152 , 0 , 0 , 0 ], [ 0 , 0 , 134 , 79 , 0 ], [ 0 , 181 , 36 , 128 , 0 ]], dtype = uint8) >>> cv2.randu(im,( 0 ),( 99 )) # uniform array([[ 19 , 53 , 2 , 86 , 82 ], [ 86 , 73 , 40 , 64 , 78 ], [ 34 , 20 , 62 , 80 , 7 ], [ 24 , 92 , 37 , 60 , 72 ], [ 40 , 12 , 27 , 33 , 18 ]], dtype = uint8) |
然后再:
1
2
3
4
|
img = ... noise = ... image = img + noise |
参考链接:
2、https://stackoverflow.com/questions/14435632/impulse-gaussian-and-salt-and-pepper-noise-with-opencv#
以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持服务器之家。
原文链接:https://www.cnblogs.com/lfri/p/10627595.html