OpenCV 绘制正多边形的具体代码,供大家参考,具体内容如下
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
|
#include <iostream> #include <opencv2\core\core.hpp> #include <opencv2\opencv.hpp> #include <opencv2\highgui\highgui.hpp> #include <opencv2\contrib\contrib.hpp> #include <fstream> using namespace cv; using namespace std; void DeleteRepetition(vector<Point> &Data) { vector<Point>::iterator it, it1; for (it = ++Data.begin(); it != Data.end();) { it1 = find(Data.begin(), it, *it); if (it1 != it) it = Data.erase(it); else it++; } } void Patterns(Mat *src, vector<Point> Dots, int fill) { DeleteRepetition(Dots); if (fill == -1) { Point *ImgDot = new Point(Dots.size()); for ( int i = 0; i < Dots.size(); i++) { ImgDot[i] = Dots[i]; } const Point* ppt = ImgDot; int npt = Dots.size(); RNG &rng = theRNG(); Scalar color = Scalar(rng.uniform(100, 255), rng.uniform(100, 255), rng.uniform(100, 255)); cv::fillPoly(*src, &ppt, &npt, 1, color); } else { Dots.push_back(Dots[0]); RNG &rng = theRNG(); Scalar color = Scalar(rng.uniform(100, 255), rng.uniform(100, 255), rng.uniform(100, 255)); for ( int i = 0; i < Dots.size() - 1; i++) { line(*src, Dots[i], Dots[i + 1], color, fill); } } } // https://www.w3cplus.com/canvas/drawing-regular-polygons.html // http://www.cnblogs.com/xcywt/p/9456526.html // 图像、中心点、半径、边数、旋转角度、线宽 void EquilateralPolygon(Mat *src, Point origin, int radius, int brim, int rotate, int fill) { if (brim < 3) return ; if (rotate > 360) return ; #define PI 3.14159265 #define ROTATE_COUNT 180 double nAgree = 360 / brim; // 计算旋转角度 double a = radius * cos (PI / brim); // 计算垂直向下的长度 double s = 2 * radius * sin (PI / brim); // 计算边长 vector<Point> Dots; Point D1, D2; D1.x = origin.x + radius* cos (-(((180 - nAgree) / 2) + rotate) * PI / 180); D1.y = origin.y - radius* sin (-(((180 - nAgree) / 2) + rotate) * PI / 180); D2.x = origin.x + radius* cos (-(((180 - nAgree) / 2) + nAgree + rotate) * PI / 180); D2.y = origin.y - radius* sin (-(((180 - nAgree) / 2) + nAgree + rotate) * PI / 180); // 第一条边的两个点 Dots.push_back(D1); Dots.push_back(D2); for ( int i = 0; i < brim - 2; i++) { double dSinRot = sin ((nAgree * (i + 1)) * PI / 180); double dCosRot = cos ((nAgree * (i + 1)) * PI / 180); int x = origin.x + dCosRot * (D2.x - origin.x) - dSinRot * (D2.y - origin.y); int y = origin.y + dSinRot * (D2.x - origin.x) + dCosRot * (D2.y - origin.y); Dots.push_back(Point(x, y)); } Patterns(src, Dots, fill); Dots.clear(); } int main() { Mat Img = Mat::zeros(800, 800, CV_8UC3); Point O = Point(400, 400); circle(Img, O, 2, Scalar(0, 0, 255), -1); //中心点 EquilateralPolygon(&Img, O, 100, 3, 0, -1); // 填充的正三角形 EquilateralPolygon(&Img, O, 200, 3, 0, 1); // 不填充的正三角形 EquilateralPolygon(&Img, O, 200, 3, 30, 1); // 不填充的正三角形,顺时针旋转30度 EquilateralPolygon(&Img, O, 200, 3, 60, 1); // 不填充的正三角形,顺时针旋转60度 EquilateralPolygon(&Img, O, 200, 3, 90, 1); // 不填充的正三角形,顺时针旋转90度 EquilateralPolygon(&Img, O, 200, 3, 120, 1); // 不填充的正三角形,顺时针旋转120度 EquilateralPolygon(&Img, O, 200, 3, 150, 1); // 不填充的正三角形,顺时针旋转150度 EquilateralPolygon(&Img, O, 200, 3, 180, 1); // 不填充的正三角形,顺时针旋转180度 EquilateralPolygon(&Img, O, 230, 4, 0, 2); // 不填充的正四边形 EquilateralPolygon(&Img, O, 250, 5, 0, 3); // 不填充的正五边形 EquilateralPolygon(&Img, O, 270, 6, 0, 4); // 不填充的正六边形 EquilateralPolygon(&Img, O, 290, 7, 0, 5); // 不填充的正七边形 EquilateralPolygon(&Img, O, 310, 8, 0, 6); // 不填充的正八边形 EquilateralPolygon(&Img, O, 330, 9, 0, 7); // 不填充的正九边形 EquilateralPolygon(&Img, O, 350, 10, 0, 8); // 不填充的正十边形 imshow( "正多边形" , Img); waitKey(0); return 0; } |
效果如下:
以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持服务器之家。
原文链接:https://blog.csdn.net/gs1069405343/article/details/83351120