1. 同线性代数中矩阵乘法的定义: np.dot()
np.dot(A, B):对于二维矩阵,计算真正意义上的矩阵乘积,同线性代数中矩阵乘法的定义。对于一维矩阵,计算两者的内积。见如下Python代码:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
|
import numpy as np # 2-D array: 2 x 3 two_dim_matrix_one = np.array([[ 1 , 2 , 3 ], [ 4 , 5 , 6 ]]) # 2-D array: 3 x 2 two_dim_matrix_two = np.array([[ 1 , 2 ], [ 3 , 4 ], [ 5 , 6 ]]) two_multi_res = np.dot(two_dim_matrix_one, two_dim_matrix_two) print ( 'two_multi_res: %s' % (two_multi_res)) # 1-D array one_dim_vec_one = np.array([ 1 , 2 , 3 ]) one_dim_vec_two = np.array([ 4 , 5 , 6 ]) one_result_res = np.dot(one_dim_vec_one, one_dim_vec_two) print ( 'one_result_res: %s' % (one_result_res)) |
结果如下:
1
2
3
|
two_multi_res: [[ 22 28 ] [ 49 64 ]] one_result_res: 32 |
2. 对应元素相乘 element-wise product: np.multiply(), 或 *
在Python中,实现对应元素相乘,有2种方式,一个是np.multiply(),另外一个是*。见如下Python代码:
1
2
3
4
5
6
7
8
9
10
11
12
13
|
import numpy as np # 2-D array: 2 x 3 two_dim_matrix_one = np.array([[ 1 , 2 , 3 ], [ 4 , 5 , 6 ]]) another_two_dim_matrix_one = np.array([[ 7 , 8 , 9 ], [ 4 , 7 , 1 ]]) # 对应元素相乘 element-wise product element_wise = two_dim_matrix_one * another_two_dim_matrix_one print ( 'element wise product: %s' % (element_wise)) # 对应元素相乘 element-wise product element_wise_2 = np.multiply(two_dim_matrix_one, another_two_dim_matrix_one) print ( 'element wise product: %s' % (element_wise_2)) |
结果如下:
1
2
3
4
|
element wise product: [[ 7 16 27 ] [ 16 35 6 ]] element wise product: [[ 7 16 27 ] [ 16 35 6 ]] |
以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持服务器之家。
原文链接:https://blog.csdn.net/u012609509/article/details/70230204