PHash算法即感知哈希算法/Perceptual Hash algorithm,计算基于低频的均值哈希.对每张图像生成一个指纹字符串,通过对该字符串比较可以判断图像间的相似度.
PHash算法原理
将图像转为灰度图,然后将图片大小调整为32*32像素并通过DCT变换,取左上角的8*8像素区域。然后计算这64个像素的灰度值的均值。将每个像素的灰度值与均值对比,大于均值记为1,小于均值记为0,得到64位哈希值。
PHash算法实现
将图片转为灰度值
将图片尺寸缩小为32*32
1
|
resize(src, src, Size(32, 32)); |
DCT变换
1
2
|
Mat srcDCT; dct(src, srcDCT); |
计算DCT左上角8*8像素区域均值,求hash值
1
2
3
4
5
6
7
8
9
10
|
double sum = 0; for ( int i = 0; i < 8; i++) for ( int j = 0; j < 8; j++) sum += srcDCT.at< float >(i,j); double average = sum/64; Mat phashcode= Mat::zeros(Size(8, 8), CV_8U); for ( int i = 0; i < 8; i++) for ( int j = 0; j < 8; j++) phashcode.at< char >(i,j) = srcDCT.at< float >(i,j) > average ? 1:0; |
hash值匹配
1
2
3
|
int d = 0; for ( int n = 0; n < srchash.size[1]; n++) if (srchash.at<uchar>(0,n) != dsthash.at<uchar>(0,n)) d++; |
即,计算两幅图哈希值之间的汉明距离,汉明距离越大,两图片越不相似。
OpenCV实现
如图在下图中对比各个图像与图person.jpg的汉明距离,以此衡量两图之间的额相似度。
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
|
#include <iostream> #include <stdio.h> #include <fstream> #include <io.h> #include <string> #include <opencv2\opencv.hpp> #include <opencv2\core\core.hpp> #include <opencv2\core\mat.hpp> using namespace std; using namespace cv; int fingerprint(Mat src, Mat* hash); int main() { Mat src = imread( "E:\\image\\image\\image\\person.jpg" , 0); if (src.empty()) { cout << "the image is not exist" << endl; return -1; } Mat srchash, dsthash; fingerprint(src, &srchash); for ( int i = 1; i <= 8; i++) { string path0 = "E:\\image\\image\\image\\person" ; string number; stringstream ss; ss << i; ss >> number; string path = "E:\\image\\image\\image\\person" + number + ".jpg" ; Mat dst = imread(path, 0); if (dst.empty()) { cout << "the image is not exist" << endl; return -1; } fingerprint(dst, &dsthash); int d = 0; for ( int n = 0; n < srchash.size[1]; n++) if (srchash.at<uchar>(0,n) != dsthash.at<uchar>(0,n)) d++; cout << "person" << i << " distance= " <<d<< "\n" ; } system ( "pause" ); return 0; } int fingerprint(Mat src, Mat* hash) { resize(src, src, Size(32, 32)); src.convertTo(src, CV_32F); Mat srcDCT; dct(src, srcDCT); srcDCT = abs (srcDCT); double sum = 0; for ( int i = 0; i < 8; i++) for ( int j = 0; j < 8; j++) sum += srcDCT.at< float >(i,j); double average = sum/64; Mat phashcode= Mat::zeros(Size(8, 8), CV_8U); for ( int i = 0; i < 8; i++) for ( int j = 0; j < 8; j++) phashcode.at< char >(i,j) = srcDCT.at< float >(i,j) > average ? 1:0; *hash = phashcode.reshape(0,1).clone(); return 0; } |
输出汉明距离:
可以看出若将阈值设置为20则可将后三张其他图片筛选掉。
以上这篇opencv3/C++ PHash算法图像检索详解就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持服务器之家。
原文链接:https://blog.csdn.net/akadiao/article/details/79779634