如果项目需求是从某些复杂的json里面取值进行计算,用jsonpath+IK(ik-expression)来处理十分方便,jsonpath用来取json里面的值然后用IK自带的函数进行计算,如果是特殊的计算那就自定义IK方法搞定,配置化很方便.
下面简单介绍下jsonpath的使用方法,主要测试都在JsonPathDemo类里面:
下面是一个简单的java项目demo:
注意: 其中他的max,min,avg,stddev函数只能类似于如下处理:
1
2
|
//正确写法 但是感觉很鸡肋 context.read( "$.avg($.result.records[0].loan_type,$.result.records[1].loan_type,$.result.records[2].loan_type)" ); |
不能传入list 感觉比较鸡肋,如果传入list 他会报错(如下错误写法):
1
2
3
4
5
|
//这样会报错 Object maxV = context.read( "$.max($.result.records[*].loan_type)" ); //这样也会报错 Object maxV = context.read( "$.result.records[*].loan_type.max()" ); //如果json文件中是这样:"loan_type":"2",也会报错,"loan_type":2 这样才被认为是数字 |
报错信息都一样, 如下:
Exception in thread "main" com.jayway.jsonpath.JsonPathException: Aggregation function attempted to calculate value using empty array
JsonPathDemo是一个测试demo:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
|
public class JsonPathDemo { public static void main(String[] args) { String json = FileUtils.readFileByLines( "demo.json" ); ReadContext context = JsonPath.parse(json); //1 返回所有name List<String> names = context.read( "$.result.records[*].name" ); //["张三","李四","王五"] System.out.println(names); //2 返回所有数组的值 List<Map<String, String>> objs = context.read( "$.result.records[*]" ); //[{"name":"张三","pid":"500234199212121212","mobile":"18623456789","applied_at":"3","confirmed_at":"5","confirm_type":"overdue","loan_type":"1","test":"mytest","all":"2"},{"name":"李四","pid":"500234199299999999","mobile":"13098765432","applied_at":"1","confirmed_at":"","confirm_type":"overdue","loan_type":"3","all":"3"},{"name":"王五","pid":"50023415464654659","mobile":"1706454894","applied_at":"-1","confirmed_at":"","confirm_type":"overdue","loan_type":"3"}] System.out.println(objs); //3 返回第一个的name String name0 = context.read( "$.result.records[0].name" ); //张三 System.out.println(name0); //4 返回下标为0 和 2 的数组值 List<String> name0and2 = context.read( "$.result.records[0,2].name" ); //["张三","王五"] System.out.println(name0and2); //5 返回下标为0 到 下标为1的 的数组值 这里[0:2] 表示包含0 但是 不包含2 List<String> name0to2 = context.read( "$.result.records[0:2].name" ); //["张三","李四"] System.out.println(name0to2); //6 返回数组的最后两个值 List<String> lastTwoName = context.read( "$.result.records[-2:].name" ); //["李四","王五"] System.out.println(lastTwoName); //7 返回下标为1之后的所有数组值 包含下标为1的 List<String> nameFromOne = context.read( "$.result.records[1:].name" ); //["李四","王五"] System.out.println(nameFromOne); //8 返回下标为3之前的所有数组值 不包含下标为3的 List<String> nameEndTwo = context.read( "$.result.records[:3].name" ); //["张三","李四","王五"] System.out.println(nameEndTwo); //9 返回applied_at大于等于2的值 List<Map<String, String>> records = context.read( "$.result.records[?(@.applied_at >= '2')]" ); //[{"name":"张三","pid":"500234199212121212","mobile":"18623456789","applied_at":"3","confirmed_at":"5","confirm_type":"overdue","loan_type":"1","test":"mytest","all":"2"}] System.out.println(records); //10 返回name等于李四的值 List<Map<String, String>> records0 = context.read( "$.result.records[?(@.name == '李四')]" ); //[{"name":"李四","pid":"500234199299999999","mobile":"13098765432","applied_at":"1","confirmed_at":"","confirm_type":"overdue","loan_type":"3"}] System.out.println(records0); //11 返回有test属性的数组 List<Map<String, String>> records1 = context.read( "$.result.records[?(@.test)]" ); //[{"name":"张三","pid":"500234199212121212","mobile":"18623456789","applied_at":"3","confirmed_at":"5","confirm_type":"overdue","loan_type":"1","test":"mytest","all":"2"}] System.out.println(records1); //12 返回有test属性的数组 List<String> list = context.read( "$..all" ); //["1","4","2","3"] System.out.println(list); //12 以当前json的某个值为条件查询 这里ok为1 取出records数组中applied_at等于1的数组 List<String> ok = context.read( "$.result.records[?(@.applied_at == $['ok'])]" ); //["1","4","2","3"] System.out.println(ok); //13 正则匹配 List<String> regexName = context.read( "$.result.records[?(@.pid =~ /.*999/i)]" ); //[{"name":"李四","pid":"500234199299999999","mobile":"13098765432","applied_at":"1","confirmed_at":"","confirm_type":"overdue","loan_type":"3","all":"3"}] System.out.println(regexName); //14 多条件 List<String> mobile = context.read( "$.result.records[?(@.all == '2' || @.name == '李四' )].mobile" ); //["18623456789","13098765432"] System.out.println(mobile); //14 查询数组长度 Integer length01 = context.read( "$.result.records.length()" ); //3 System.out.println(length01); //15 查询list里面每个对象长度 List<Integer> length02 = context.read( "$.result.records[?(@.all == '2' || @.name == '李四' )].length()" ); //[9,8] System.out.println(length02); //16 最大值 Object maxV = context.read( "$.max($.result.records[0].loan_type,$.result.records[1].loan_type,$.result.records[2].loan_type)" ); //3.0 System.out.println(maxV); //17 最小值 Object minV = context.read( "$.min($.result.records[0].loan_type,$.result.records[1].loan_type,$.result.records[2].loan_type)" ); //1.0 System.out.println(minV); //18 平均值 double avgV = context.read( "$.avg($.result.records[0].loan_type,$.result.records[1].loan_type,$.result.records[2].loan_type)" ); //2.3333333333333335 System.out.println(avgV); //19 标准差 double stddevV = context.read( "$.stddev($.result.records[0].loan_type,$.result.records[1].loan_type,$.result.records[2].loan_type)" ); //0.9428090415820636 System.out.println(stddevV); //20 读取一个不存在的 String haha = context.read( "$.result.haha" ); //抛出异常 //Exception in thread "main" com.jayway.jsonpath.PathNotFoundException: No results for path: $['result']['haha'] //at com.jayway.jsonpath.internal.path.EvaluationContextImpl.getValue(EvaluationContextImpl.java:133) //at com.jayway.jsonpath.JsonPath.read(JsonPath.java:187) //at com.jayway.jsonpath.internal.JsonContext.read(JsonContext.java:102) //at com.jayway.jsonpath.internal.JsonContext.read(JsonContext.java:89) //at cn.lijie.jsonpath.JsonPathDemo.main(JsonPathDemo.java:58) //at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method) //at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:62) //at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43) //at java.lang.reflect.Method.invoke(Method.java:498) //at com.intellij.rt.execution.application.AppMain.main(AppMain.java:147) System.out.println(haha); } } |
pom文件引入:
1
2
3
4
5
|
< dependency > < groupId >com.jayway.jsonpath</ groupId > < artifactId >json-path</ artifactId > < version >2.3.0</ version > </ dependency > |
其中demo.json是一个测试json:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
|
{ "action" : "/interface.service/xxx/queryBlackUserData" , "all" : "1" , "result" : { "count" : 2 , "tenant_count" : 2 , "records" : [ { "name" : "张三" , "pid" : "500234199212121212" , "mobile" : "18623456789" , "applied_at" : "3" , "confirmed_at" : "5" , "confirm_type" : "overdue" , "loan_type" : 1 , "test" : "mytest" , "all" : "2" }, { "name" : "李四" , "pid" : "500234199299999999" , "mobile" : "13098765432" , "applied_at" : "1" , "confirmed_at" : "" , "confirm_type" : "overdue" , "loan_type" : 3 , "all" : "3" }, { "name" : "王五" , "pid" : "50023415464654659" , "mobile" : "1706454894" , "applied_at" : "-1" , "confirmed_at" : "" , "confirm_type" : "overdue" , "loan_type" : 3 } ], "all" : "4" }, "code" : 200 , "subtime" : "1480495123550" , "status" : "success" , "ok" : 3 } |
FileUtils类是用于读取xx.json文件为字符串的json:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
|
public class FileUtils { /** * 以行为单位读取文件,常用于读面向行的格式化文件 */ public static String readFileByLines(String fileName) { File file = new File(fileName); BufferedReader reader = null ; String str = "" ; try { InputStream is = FileUtils. class .getClassLoader().getResourceAsStream(fileName); reader = new BufferedReader( new InputStreamReader(is)); String tempString = null ; int line = 1 ; // 一次读入一行,直到读入null为文件结束 while ((tempString = reader.readLine()) != null ) { // 显示行号 str += tempString; } reader.close(); } catch (IOException e) { e.printStackTrace(); } finally { if (reader != null ) { try { reader.close(); } catch (IOException e1) { } } } return str; } } |
补充:json接口测试的利器jsonpath
在测试REST接口的时候,经常要解析JSON,那么可以使用开源jsonpath进行,其中看网上看到相关的说法不错的使用场景为:
1、接口关联
也称为关联参数。在应用业务接口中,完成一个业务功能时,有时候一个接口可能不满足业务的整个流程逻辑,需要多个接口配合使用,简单的案例如:B接口的成功调用依赖于A接口,需要在A接口的响应数据(response)中拿到需要的字段,在调用B接口的时候,传递给B接口作为B接口请求参数,拿到后续响应的响应数据。
接口关联通常可以使用正则表达式去提取需要的数据,但对于json这种简洁、清晰层次结构、轻量级的数据交互格式,使用正则未免有点杀鸡用牛刀的感觉(是的,因为我不擅长写正则表达式),我们需要更加简单、直接的提取json数据的方式。
2、数据验证
这里的数据验证指的是对响应结果进行数据的校验
接口自动化测试中,对于简单的响应结果(json),可以直接和期望结果进行比对,判断是否完全相等即可。
如 json {"status":1,"msg":"登录成功"}
3、对于格式较复杂
尤其部分数据存在不确定性、会根据实际情况变化的响应结果,简单的判断是否完全相等(断言)通常会失败。
如:
1
|
json { "status" : 1 , "code" : "10001" , "data" :[{ "id" : 1 , "investId" : "1" , "createTime" : "2018-04-27 12:24:01" , "terms" : "1" , "unfinishedInterest" : "1.0" , "unfinishedPrincipal" : "0" , "repaymentDate" : "2018-05-27 12:24:01" , "actualRepaymentDate" : null , "status" : "0" },{ "id" : 2 , "investId" : "1" , "createTime" : "2018-04-27 12:24:01" , "terms" : "2" , "unfinishedInterest" : "1.0" , "unfinishedPrincipal" : "0" , "repaymentDate" : "2018-06-27 12:24:01" , "actualRepaymentDate" : null , "status" : "0" },{ "id" : 3 , "investId" : "1" , "createTime" : "2018-04-27 12:24:01" , "terms" : "3" , "unfinishedInterest" : "1.0" , "unfinishedPrincipal" : "100.00" , "repaymentDate" : "2018-07-27 12:24:01" , "actualRepaymentDate" : null , "status" : "0" }], "msg" : "获取信息成功" } |
上面的json结构嵌套了很多信息,完整的匹配几乎不可能成功。比如其中的createTime信息,根据执行接口测试用例的时间每次都不一样。同时这个时间是响应结果中较为次要的信息,在进行接口自动化测试时,是可以选择被忽略的。
4、我们需要某种简单的方法
能够从json中提取出我们真正关注的信息(通常也被称为关键信息)。
如提取出status的值为1,data数组中每个对象的investId都为1,data中第三个对象的unfinishedPrincipal值为100.00,只要这三个关键信息校验通过,我们就认为响应结果没有问题。
JSONPATH有点像XPATH了,语法规则小结下:
这里有个表格,说明JSONPath语法元素和对应XPath元素的对比。
XPath | JSONPath | Description |
/ | $ | 表示根元素 |
. | @ | 当前元素 |
/ | . or [] | 子元素 |
.. | n/a | 父元素 |
// | .. | 递归下降,JSONPath是从E4X借鉴的。 |
* | * | 通配符,表示所有的元素 |
@ | n/a | 属性访问字符 |
[] | [] |
子元素操作符 |
| | [,] |
连接操作符在XPath 结果合并其它结点集合。JSONP允许name或者数组索引。 |
n/a | [start:end:step] |
数组分割操作从ES4借鉴。 |
[] | ?() |
应用过滤表示式 |
n/a | () |
脚本表达式,使用在脚本引擎下面。 |
() | n/a | Xpath分组 |
下面是一个简单的json数据结构代表一个书店(原始的xml文件是)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
|
{ "store": { "book": [ { "category": "reference", "author": "Nigel Rees", "title": "Sayings of the Century", "price": 8.95 }, { "category": "fiction", "author": "Evelyn Waugh", "title": "Sword of Honour", "price": 12.99 }, { "category": "fiction", "author": "Herman Melville", "title": "Moby Dick", "isbn": "0-553-21311-3", "price": 8.99 }, { "category": "fiction", "author": "J. R. R. Tolkien", "title": "The Lord of the Rings", "isbn": "0-395-19395-8", "price": 22.99 } ], "bicycle": { "color": "red", "price": 19.95 } } } |
XPath | JSONPath | 结果 |
/store/book/author | $.store.book[*].author |
书点所有书的作者 |
//author | $..author |
所有的作者 |
/store/* | $.store.* |
store的所有元素。所有的bookst和bicycle |
/store//price | $.store..price |
store里面所有东西的price |
//book[3] | $..book[2] |
第三个书 |
//book[last()] | $..book[(@.length-1)] | 最后一本书 |
//book[position()<3] |
$..book[0,1]
$..book[:2] |
前面的两本书。 |
//book[isbn] | $..book[?(@.isbn)] | 过滤出所有的包含isbn的书。 |
//book[price<10] | $..book[?(@.price<10)] | 过滤出价格低于10的书。 |
//* | $..* |
所有元素。 |
比如在单元测试MOCK中,就可以这样使用:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
|
@RunWith (SpringRunner. class ) @SpringBootTest @AutoConfigureMockMvc @ActiveProfiles ( "test" ) public class BookControllerTest { @Autowired private MockMvc mockMvc; @MockBean private BookRepository mockRepository; /* { "timestamp":"2019-03-05T09:34:13.280+0000", "status":400, "errors":["Author is not allowed.","Please provide a price","Please provide a author"] } */ //article : jsonpath in array @Test public void save_emptyAuthor_emptyPrice_400() throws Exception { String bookInJson = "{\"name\":\"ABC\"}" ; mockMvc.perform(post( "/books" ) .content(bookInJson) .header(HttpHeaders.CONTENT_TYPE, MediaType.APPLICATION_JSON)) .andDo(print()) .andExpect(status().isBadRequest()) .andExpect(jsonPath( "$.timestamp" , is(notNullValue()))) .andExpect(jsonPath( "$.status" , is( 400 ))) .andExpect(jsonPath( "$.errors" ).isArray()) .andExpect(jsonPath( "$.errors" , hasSize( 3 ))) .andExpect(jsonPath( "$.errors" , hasItem( "Author is not allowed." ))) .andExpect(jsonPath( "$.errors" , hasItem( "Please provide a author" ))) .andExpect(jsonPath( "$.errors" , hasItem( "Please provide a price" ))); verify(mockRepository, times( 0 )).save(any(Book. class )); } } |
以上为个人经验,希望能给大家一个参考,也希望大家多多支持服务器之家。如有错误或未考虑完全的地方,望不吝赐教。
原文链接:https://blog.csdn.net/qq_20641565/article/details/77162868