我就废话不多说了,大家还是直接看代码吧~
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
|
import matplotlib.pyplot as plt import numpy as np def sigmoid(x): # 直接返回sigmoid函数 return 1. / ( 1. + np.exp( - x)) def plot_sigmoid(): # param:起点,终点,间距 x = np.arange( - 8 , 8 , 0.2 ) y = sigmoid(x) plt.plot(x, y) plt.show() if __name__ = = '__main__' : plot_sigmoid() |
如图:
补充知识:python:实现并绘制 sigmoid函数,tanh函数,ReLU函数,PReLU函数
如下所示:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
|
# -*- coding:utf-8 -*- from matplotlib import pyplot as plt import numpy as np import mpl_toolkits.axisartist as axisartist def sigmoid(x): return 1. / ( 1 + np.exp( - x)) def tanh(x): return (np.exp(x) - np.exp( - x)) / (np.exp(x) + np.exp( - x)) def relu(x): return np.where(x< 0 , 0 ,x) def prelu(x): return np.where(x< 0 , 0.5 * x,x) def plot_sigmoid(): x = np.arange( - 10 , 10 , 0.1 ) y = sigmoid(x) fig = plt.figure() # ax = fig.add_subplot(111) ax = axisartist.Subplot(fig, 111 ) ax.spines[ 'top' ].set_color( 'none' ) ax.spines[ 'right' ].set_color( 'none' ) # ax.spines['bottom'].set_color('none') # ax.spines['left'].set_color('none') ax.axis[ 'bottom' ].set_axisline_style( "-|>" ,size = 1.5 ) ax.spines[ 'left' ].set_position(( 'data' , 0 )) ax.plot(x, y) plt.xlim([ - 10.05 , 10.05 ]) plt.ylim([ - 0.02 , 1.02 ]) plt.tight_layout() plt.savefig( "sigmoid.png" ) plt.show() def plot_tanh(): x = np.arange( - 10 , 10 , 0.1 ) y = tanh(x) fig = plt.figure() ax = fig.add_subplot( 111 ) ax.spines[ 'top' ].set_color( 'none' ) ax.spines[ 'right' ].set_color( 'none' ) # ax.spines['bottom'].set_color('none') # ax.spines['left'].set_color('none') ax.spines[ 'left' ].set_position(( 'data' , 0 )) ax.spines[ 'bottom' ].set_position(( 'data' , 0 )) ax.plot(x, y) plt.xlim([ - 10.05 , 10.05 ]) plt.ylim([ - 1.02 , 1.02 ]) ax.set_yticks([ - 1.0 , - 0.5 , 0.5 , 1.0 ]) ax.set_xticks([ - 10 , - 5 , 5 , 10 ]) plt.tight_layout() plt.savefig( "tanh.png" ) plt.show() def plot_relu(): x = np.arange( - 10 , 10 , 0.1 ) y = relu(x) fig = plt.figure() ax = fig.add_subplot( 111 ) ax.spines[ 'top' ].set_color( 'none' ) ax.spines[ 'right' ].set_color( 'none' ) # ax.spines['bottom'].set_color('none') # ax.spines['left'].set_color('none') ax.spines[ 'left' ].set_position(( 'data' , 0 )) ax.plot(x, y) plt.xlim([ - 10.05 , 10.05 ]) plt.ylim([ 0 , 10.02 ]) ax.set_yticks([ 2 , 4 , 6 , 8 , 10 ]) plt.tight_layout() plt.savefig( "relu.png" ) plt.show() def plot_prelu(): x = np.arange( - 10 , 10 , 0.1 ) y = prelu(x) fig = plt.figure() ax = fig.add_subplot( 111 ) ax.spines[ 'top' ].set_color( 'none' ) ax.spines[ 'right' ].set_color( 'none' ) # ax.spines['bottom'].set_color('none') # ax.spines['left'].set_color('none') ax.spines[ 'left' ].set_position(( 'data' , 0 )) ax.spines[ 'bottom' ].set_position(( 'data' , 0 )) ax.plot(x, y) plt.xticks([]) plt.yticks([]) plt.tight_layout() plt.savefig( "prelu.png" ) plt.show() if __name__ = = "__main__" : plot_sigmoid() plot_tanh() plot_relu() plot_prelu() |
以上这篇Python3 用matplotlib绘制sigmoid函数的案例就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持服务器之家。
原文链接:https://blog.csdn.net/hiudawn/article/details/79876726