数据
import numpy as np import pandas as pd data = [{"Name": "小明", "Chinese": [70, 80], "Math": [90, 80]}, {"Name": "小红", "Chinese": [70, 80, 90], "Math": [90, 80, 70]}] data = pd.DataFrame(data) data
拆分成行
def split_row(data, column): """拆分成行 :param data: 原始数据 :param column: 拆分的列名 :type data: pandas.core.frame.DataFrame :type column: str """ row_len = list(map(len, data[column].values)) rows = [] for i in data.columns: if i == column: row = np.concatenate(data[i].values) else: row = np.repeat(data[i].values, row_len) rows.append(row) return pd.DataFrame(np.dstack(tuple(rows))[0], columns=data.columns) split_row(data, column="Chinese")
拆分成列
from copy import deepcopy def split_col(data, column): """拆分成列 :param data: 原始数据 :param column: 拆分的列名 :type data: pandas.core.frame.DataFrame :type column: str """ data = deepcopy(data) max_len = max(list(map(len, data[column].values))) # 最大长度 new_col = data[column].apply(lambda x: x + [None]*(max_len - len(x))) # 补空值,None可换成np.nan new_col = np.array(new_col.tolist()).T # 转置 for i, j in enumerate(new_col): data[column + str(i)] = j return data split_col(data, column="Chinese")
其他情况
1. 批量处理+不要原列
def split_col(data, columns): """拆分成列 :param data: 原始数据 :param columns: 拆分的列名 :type data: pandas.core.frame.DataFrame :type columns: list """ for c in columns: new_col = data.pop(c) max_len = max(list(map(len, new_col.values))) # 最大长度 new_col = new_col.apply(lambda x: x + [None]*(max_len - len(x))) # 补空值,None可换成np.nan new_col = np.array(new_col.tolist()).T # 转置 for i, j in enumerate(new_col): data[c + str(i)] = j split_col(data, columns=["Chinese","Math"]) data
2. 带int和list数据
转成这样:
import numpy as np import pandas as pd data = [{"Name": "小爱", "Chinese": 70, "Math": 90}, {"Name": "小明", "Chinese": [70, 80], "Math": [90, 80]}, {"Name": "小红", "Chinese": [70, 80, 90], "Math": [90, 80, 70]}] data = pd.DataFrame(data) def split_col(data, columns): """拆分成列 :param data: 原始数据 :param columns: 拆分的列名 :type data: pandas.core.frame.DataFrame :type columns: list """ for c in columns: new_col = data.pop(c) max_len = max(list(map(lambda x:len(x) if isinstance(x, list) else 1, new_col.values))) # 最大长度 new_col = new_col.apply(lambda x: x+[None]*(max_len - len(x)) if isinstance(x, list) else [x]+[None]*(max_len - 1)) # 补空值,None可换成np.nan new_col = np.array(new_col.tolist()).T # 转置 for i, j in enumerate(new_col): data[c + str(i)] = j split_col(data, columns=["Chinese","Math"]) data
参考文献
Python Pandas list(列表)数据列拆分成多行的方法
10分钟了解Pandas基础知识
到此这篇关于pandas将list数据拆分成行或列的实现的文章就介绍到这了,更多相关pandas list数据拆分内容请搜索服务器之家以前的文章或继续浏览下面的相关文章希望大家以后多多支持服务器之家!
原文链接:https://blog.csdn.net/lly1122334/article/details/104629678