1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
|
#!/usr/bin/env python # -*- coding: utf-8 -*- # @File : 自实现一个线性回归.py # @Author: 赵路仓 # @Date : 2020/4/12 # @Desc : # @Contact : 398333404@qq.com import os import tensorflow as tf def linear_regression(): """ 自实现一个线性回归 :return: """ # 命名空间 with tf.variable_scope( "prepared_data" ): # 准备数据 x = tf.random_normal(shape = [ 100 , 1 ], name = "Feature" ) y_true = tf.matmul(x, [[ 0.08 ]]) + 0.7 # x = tf.constant([[1.0], [2.0], [3.0]]) # y_true = tf.constant([[0.78], [0.86], [0.94]]) with tf.variable_scope( "create_model" ): # 2.构造函数 # 定义模型变量参数 weights = tf.Variable(initial_value = tf.random_normal(shape = [ 1 , 1 ], name = "Weights" )) bias = tf.Variable(initial_value = tf.random_normal(shape = [ 1 , 1 ], name = "Bias" )) y_predit = tf.matmul(x, weights) + bias with tf.variable_scope( "loss_function" ): # 3.构造损失函数 error = tf.reduce_mean(tf.square(y_predit - y_true)) with tf.variable_scope( "optimizer" ): # 4.优化损失 optimizer = tf.train.GradientDescentOptimizer(learning_rate = 0.01 ).minimize(error) # 收集变量 tf.summary.scalar( "error" , error) tf.summary.histogram( "weights" , weights) tf.summary.histogram( "bias" , bias) # 合并变量 merged = tf.summary.merge_all() # 创建saver对象 saver = tf.train.Saver() # 显式的初始化变量 init = tf.global_variables_initializer() # 开启会话 with tf.Session() as sess: # 初始化变量 sess.run(init) # 创建事件文件 file_writer = tf.summary.FileWriter( "E:/tmp/linear" , graph = sess.graph) # print(x.eval()) # print(y_true.eval()) # 查看初始化变量模型参数之后的值 print ( "训练前模型参数为:权重%f,偏置%f" % (weights. eval (), bias. eval ())) # 开始训练 for i in range ( 1000 ): sess.run(optimizer) print ( "第%d次参数为:权重%f,偏置%f,损失%f" % (i + 1 , weights. eval (), bias. eval (), error. eval ())) # 运行合并变量操作 summary = sess.run(merged) # 将每次迭代后的变量写入事件 file_writer.add_summary(summary, i) # 保存模型 if i = = 999 : saver.save(sess, "./tmp/model/my_linear.ckpt" ) # # 加载模型 # if os.path.exists("./tmp/model/checkpoint"): # saver.restore(sess, "./tmp/model/my_linear.ckpt") print ( "参数为:权重%f,偏置%f,损失%f" % (weights. eval (), bias. eval (), error. eval ())) pre = [[ 0.5 ]] prediction = tf.matmul(pre, weights) + bias sess.run(prediction) print (prediction. eval ()) return None if __name__ = = "__main__" : linear_regression() |
以上就是python 实现一个简单的线性回归案例的详细内容,更多关于python 实现线性回归的资料请关注服务器之家其它相关文章!
原文链接:https://www.cnblogs.com/zlc364624/p/12686695.html