预处理命令
1
2
3
4
5
6
7
8
9
10
11
|
#include <stdio.h> #include <stdlib.h> #define TRUE 1 #define FALSE 0 typedef int elemtype; typedef struct tNode* tree; typedef struct tNode { elemtype elem; tree left; tree right; }tNode; |
计算树的节点个数
1
2
3
4
5
6
7
|
//明确函数的功能:返回传入树的节点个数 //定好尾头:尾:当传入的节点尾NULL时 头:1 + count(t->left) + count(t->right) int count(tree t) { if (t == NULL) return 0; return 1 + count(t->left) + count(t->right); } |
求树中节点数据为num的节点个数
1
2
3
4
5
6
7
8
9
10
11
12
13
|
//明确函数功能:返回节点数据为num的节点个数 //定好尾头:尾:NULL 头:1 + func(左) + func(右) // 或者 func(左) + func(右) int count_num(tree t, elemtype num) { if (t == NULL) return 0; else { if (t->elem == num) return 1 + count_num(t->left, num) + count_num(t->right, num); else return count_num(t->left, num) + count_num(t->right, num); } } |
求树中节点数据的总和
1
2
3
4
5
6
7
8
9
|
//明确函数功能:返回总和 //定好尾头:尾:NULL 头:root-> elem + func(左) + func(右) int add(tree t) { if (t == NULL) return 0; else return t->elem + add(t->left) + add(t->right); } |
判断树中有无数据为num的节点
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
|
//两种方式:一种是可以达成目的就结束,一种是需要遍历完全才结束 //明确函数功能:判断其中有没有值为num的节点返回1或0 //定好尾头:尾:值为num ,头: int inTree_1(tree t, elemtype num) { if (t->elem == num) return TRUE; else { if (t->left != NULL) intree(t->left, num); // 使用递归将其递到子节点 if (t->right != NULL) intree(t->right, num); } return FALSE; } //确定函数功能:根据num的有无,返回0/非0 //定好尾头:尾:NULL 头:有:return 1 + func(左)+func(右) 无:func(左)+func(右) int inTree_2(tree t, elemtype num) { if (t == NULL) return 0; int res; if (t->elem == num) res = 1+ intree(t->left, num) + intree(t->right, num); if (t->elem == num) res = intree(t->left, num) + intree(t->right, num); return res; } |
计算值为num的个数
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
|
int count_elem(tree t, elemtype val, int * num) { int val_l, val_r; if (t->left == NULL) return t->elem; if (t->right == NULL) return t->elem; else { val_l = count_elem(t->left, val, num); if (val == val_l) (*num)++; val_r = count_elem(t->right, val, num); if (val == val_r) (*num)++; return t->elem; } return *num; } |
打印trunk
1
2
3
4
5
6
7
8
9
10
|
//明确函数功能:打印trunk //定好尾头 尾:NULL 头:第一步是判断本节点是否是树干然后打印,再func(左)去打印左边的树干 func(右)去打印右边的树干 void print_trunk(tree t) { if (t == NULL) return ; if (t->right != NULL || t->left != NULL) printf ( "%d" , t->elem); print_trunk(t->right); print_trunk(t->left); } |
判断两棵树是否一样
1
2
3
4
5
6
7
8
9
10
11
12
13
14
|
int same(tree t1, tree t2) { if (count(t1) == count(t2)) { if (t1->elem != t2->elem) return FALSE; if (t1->left != NULL && t2->left != NULL) same(t1->left, t2->left); if (t1->right != NULL && t2->right != NULL) same(t1->right, t2->right); return TRUE; } else return FALSE; } |
求树的高度
1
2
3
4
5
6
7
|
#define max(x, y) (x > y) ? x : y int height(tree t) { if (t == NULL) return -1; return 1 + max(height(t->right), height(t->left)); } |
打印树中某值的层数
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
|
//明确函数功能:寻找放入的数的层数并打印 //确定尾://找到特定值的节点 找到NULL 头:若是则打印,若不是则去左右子树寻找layer++,当孩子寻找完都没有时layer-- bool flag = false ; //flag标记可以用于提前结束递归 void getTreeLayer(Node * root, int num, int &layer) { if (root == NULL) return ; if (flag == true ) return ; if (root->data == num) { cout << "num值" << num << "的层数为:" << layer << endl; flag = true ; return ; } layer++; getTreeLayer(root->lChild, num); getTreeLayer(root->rChild, num); layer--; } |
求节点的路径
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
|
vector< int > path; bool flag = false ; //flag标记可以用于提前结束递归 void getTreeLayer(Node * root, int num, int &layer) { if (root == NULL) return ; if (flag == true ) return ; if (root->data == num) { for ( int x : path) cout << x << " " ; bool flag = true ; return ; } path.push_back(); getTreeLayer(root->lChild, num); getTreeLayer(root->rChild, num); path.pop_back(); } |
总结
以上所述是小编给大家介绍的C/C++实现树操作的实例代码,希望对大家有所帮助!
原文链接:https://blog.csdn.net/a13352912632/article/details/104263371